Attachment 4

(W -Trans

Transportation Impact Study for the BASIS School Project

Prepared for the City of Dublin

Submitted by
W-Trans

March 21, 2023

This page intentionally left blank

Table of Contents

Executive Summary 1
Introduction2
Transportation Setting 4
Project Data5
Circulation System 8
Safety Issues 13
Capacity Analysis 17
Conclusions and Recommendations 24
Study Participants and References 25
Figures

1. Study Area and Existing Lane Configurations 3
2. Site Plan 6
3. Existing Traffic Volumes 19
4. Near-Term Traffic Volumes 20
5. Project Traffic Volumes. 22
6. Near-Term plus Project Traffic Volumes 23
Tables
7. Trip Generation Summary 5
8. Trip Distribution Assumptions 7
9. Bicycle Facility Summary 10
10. Transit Routes 11
11. Left-Turn Queues at Regional Street/Dublin Boulevard 14
12. Signalized Intersection Level of Service Criteria 17
13. Existing Peak Hour Intersection Levels of Service 18
14. Near-Term Peak Hour Intersection Levels of Service 18
15. Near-Term and Near-Term plus Project Peak Hour Intersection Levels of Service 21

Appendices

A. Queuing Worksheets
B. Intersection Peak Hour Volumes
C. Intersection Level of Service Calculations

This page intentionally left blank

Executive Summary

The BASIS School Project would be located at 7950 Dublin Boulevard in the City of Dublin. The school proposes to occupy an existing 81,575 square-foot office building and construct a new 9,134 square-foot gym and sports field. The project is expected to generate an average of 2,551 net-new daily trips, including 528 a.m., 240 school p.m., and 181 p.m. peak hour trips.

Pedestrian, bicycle, and transit facilities within the study area are generally adequate and would be improved once the planned future facilities identified in the City's draft Bike and Pedestrian Plan are completed. However, further study (conducted once the school opens) is recommended to determine whether a midblock pedestrian crosswalk with or without active enhancements, such as Rectangular Rapid Flashing Beacons (RRFB), is appropriate to facilitate pedestrian movement between the project site and nearby retail centers as well as to the BART station. This pedestrian amenity is consistent with the policies described in the Downtown Dublin Specific Plan.

Vehicles would primarily access the project site via driveways on Dublin Boulevard and Regional Street. Sight distances at these driveways for both entering and exiting drivers is adequate for the approach speeds.

The vehicle queue length would exceed available storage in the Regional Street/Dublin Boulevard northbound left-turn lane during the a.m. peak hour upon the addition of project-related traffic. To increase the storage capacity and vehicle throughput of this facility, it is recommended that the left-turn lane be extended and a center left-turn lane be added by modifying the striping and eliminating on-street parking. Optimization of traffic signal timing would also increase vehicle throughput at this intersection. Further study is also recommended to determine whether traffic operations elsewhere along the corridor would degrade since all the signalized intersections along the Dublin Boulevard corridor are under coordination and influence one another.

The proposed Traffic and Parking Management Plan prepared by the BASIS school is reasonably expected to result in acceptable operations.

The intersections at San Ramon Road/Dublin Boulevard, and Regional Street/Dublin Boulevard were evaluated for this study. The addition of project-related volumes at Regional Street/Dublin Boulevard is expected to degrade LOS from D to F during the a.m. peak hour. However, this is not considered an adverse condition based on the traffic operation standards described in the City's Downtown Dublin Specific Plan.

Introduction

This report presents an analysis of the potential traffic impacts and adverse operational effects that would be associated with development of the proposed BASIS Independent School to be located at 7950 Dublin Boulevard in the City of Dublin. The traffic study was completed in accordance with the criteria established by the City of Dublin and is consistent with standard traffic engineering techniques.

Prelude

The purpose of a traffic impact study is to provide City staff and policy makers with data that they can use to make an informed decision regarding the potential transportation impacts of a proposed project, and any associated recommended improvements to comply with the City's General Plan, or other policies. Vehicular traffic service levels at key intersections were evaluated for consistency with General Plan policies by determining the number of new trips that the proposed use would be expected to generate, distributing these trips to the surrounding street system based on anticipated travel patterns specific to the proposed project, then analyzing the effect the new traffic would be expected to have on the study intersections and need for improvements to maintain acceptable operation.

Project Profile

The BASIS School proposes to move into an existing 81,575 square foot office building at 7950 Dublin Boulevard, as well as construct a new 9,134 square foot gym building and sports field. The proposed school is assumed to be comprised of 420 middle school students and 380 high school students (800 students total). The school is proposed to open in September 2024. The location of the project site is shown in Figure 1.

Transportation Impact Study for the BASIS School Project
Figure 1 - Study Area and Existing Lane Configurations

Transportation Setting

Study Area and Periods

The study area varies depending on the topic. For pedestrian trips it consists of all streets within a half-mile of the project site that would lie along primary routes of pedestrian travel, or those leading to nearby residential or commercial areas. For bicycle trips it consists of all streets within one mile of the project site that would lie along primary routes of bicycle travel. For the safety and operational analyses, it consists of the project frontage and the following intersections selected with input from City staff:

1. San Ramon Road/Dublin Boulevard
2. Regional Street/Dublin Boulevard

It is noted that the two project driveways were not considered as study intersections. The California Vehicle Code defines an intersection as "the area embraced within the prolongation of the lateral curb lines, or, if none, then the lateral boundary lines of the roadways, of two highways which join one another at approximately right angles or the area within which vehicles traveling upon different highways joining at any other angle may come in conflict." This definition specifies that intersections are created where two "highways," or public streets, intersect. As driveways are not public streets, where they connect with a public road is not an intersection, so it would be unreasonable to evaluate it as such. The driveway connection should, however, be evaluated for operational issues such as adequacy of sight distance, need for turn lanes, and delay may be relevant in some cases, though it would not be associated with a Level of Service.

Operating conditions during the traditional a.m. and p.m. commute peak periods were evaluated to capture the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 and 9:00 a.m. and reflects conditions during the home to work or school commute, and the p.m. peak hour occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute. Additionally, the afternoon peak period of 2:00 to 4:00 p.m. was evaluated to capture the effects of traffic at the end of the school day. Counts were obtained for the study intersections on November 10, 2022, while local schools were in session.

Study Intersections

San Ramon Road/Dublin Boulevard is a four-legged signalized intersection with protected left-turn phasing on all approaches. Crosswalks with pedestrian phasing are available on all but the southern leg of the intersection.

Regional Street/Dublin Boulevard is a four-way signalized intersection with protected left-turn phasing on all approaches. Marked crosswalks with pedestrian phasing exist on all legs of the intersection.

The locations of the study intersections and the existing lane configurations and controls are shown in Figure 1.

Project Data

Trip Generation

The project consists of a school which would repurpose an existing 81,575 square foot office building as well as construction of a new gymnasium and sports fields. The proposed project site plan is shown in Figure 2.

The anticipated trip generation during the a.m. and school p.m. peak hours for the proposed project was estimated based on March 2017 observations conducted at the BASIS Independent Silicon Valley Campus located at 1290 Parkmoor Avenue in San Jose. To estimate the daily and p.m. peak hour trip generation, published standard rates for "Private School (K-8)" (ITE LU \#530) and "Private High School" (ITE LU \#534) from the Institute of Transportation Engineers (ITE) in Trip Generation Manual, $11^{\text {th }}$ Edition, 2021, were used. These land uses were selected as they represented the most appropriate land uses available in the Trip Generation Manual. It is noted that the new gym building and sports field would not be open to the public and as such would not independently generate any new vehicle trips. Trip credits related to the existing building on site were not applied since the building was unoccupied and therefore not generating any trips on the date (November 10, 2022) that traffic counts were conducted. Trip reductions attributable to private bus use, carpooling and alternate transportation modes (walking, biking, or using transit) are assumed to be included for the a.m. and school p.m. peak hours only since the trip generation estimate is based on observations conducted at another similar BASIS campus. To provide a conservative analysis, reductions were not applied to the daily and p.m. peak hour trip generation estimates.

Total Project Trip Generation

The proposed project is expected to generate an average of 2,551 trips per day, including 528 trips during the a.m. peak hour, 240 during the school p.m. peak hour, and 181 during the p.m. peak hour. These new trips represent the increase in traffic associated with the project compared to existing conditions. For informational purposes, the most comparable ITE rates and resulting trips are also provided. These results are summarized in Table 1.

Land Use	Std	Daily		AM Peak Hour				School PM Peak Hour				PM Peak Hour			
		Rate	Trips	Rate	Trips	In	Out	Rate	Trips	In	Out	Rate	Trips	In	Out
School	800			0.66*	528	267	261	0.30*	240	122	118				
Private (K-8)	420		1,726									0.26	109	50	59
Private HS	380	2.17	825									0.19	72	28	44
Total		2,551		528		267	261	240		122	118	181		78	103
Informational Use Only, Based on ITE Rates															
Private (K-8)	420	4.11	1,726	1.01	424	237	187	0.60	252	118	134	0.26	109	50	59
Private HS	380	2.17	825	0.66	251	148	103	0.40	152	59	93	0.19	72	28	44
Subtotal (ITE)			2,551		675	385	290		404	177	227		181	78	103

Note: * Estimated using observations at BASIS Independent Silicon Valley Campus; std = students

Trip Distribution

The pattern used to allocate new project trips to the street network was based on volume plots from the City of Dublin Travel Demand Model (most recently updated in 2021) with manual adjustments applied for rounding. The applied distribution assumptions and resulting trips are shown in Table 2.

Table 2 - Trip Distribution Assumptions

Route	Percent	Daily Trips	AM Trips	School PM Trips	PM Trips
To/From North on San Ramon Blvd	30%	765	158	72	54
To/From South on San Ramon Blvd	40%	1,020	212	96	73
To/From West on Dublin Blvd	14%	357	74	34	25
To/From East on Dublin Blvd	12%	306	63	29	22
To/From North on Regional St	3%	77	16	7	5
To/From East on St. Patrick Wy	1%	26	5	2	2
TOTAL	$\mathbf{1 0 0 \%}$	$\mathbf{2 , 5 5 1}$	$\mathbf{5 2 8}$	$\mathbf{2 4 0}$	$\mathbf{1 8 1}$

Circulation System

This section addresses the first transportation bullet point on the CEQA checklist, which relates to the potential for a project to conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities.

Pedestrian Facilities

Existing and Planned Pedestrian Facilities

Pedestrian facilities include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, benches, etc. In the vicinity of the project site, sidewalks, crosswalks, pedestrian signals, and curb ramps provide connected access for pedestrians. However, there is a gap in the sidewalk network on the west side of San Ramon Road to the south of Dublin Boulevard.

- Dublin Boulevard - Continuous sidewalks are provided on both sides of Dublin Boulevard to the east of Hansen Drive. A network of curb ramps, crosswalks with pedestrian phasing at signalized intersections, and overhead lighting exists. Dublin Boulevard provides access to commercial and residential areas within the City of Dublin.
- San Ramon Road - Continuous sidewalks are provided on both sides of San Ramon Road north of Dublin Boulevard and only on the west side of the road south of Dublin Boulevard. Overhead streetlights are provided on San Ramon Road.
- Regional Street - Sidewalks are provided on both sides of Regional Street. Curb ramps and crosswalks with pedestrian phasing exist at both intersections along the street and overhead lighting is provided. Regional Street provides access to adjacent commercial land uses.
- The Saint Patrick Way extension to Regional Street is currently under construction and is included as part of the pedestrian priority network according to the Downtown Dublin Specific Plan.

Midblock Pedestrian Crossing on Regional Street

A midblock crosswalk would provide a direct path between land uses on either side of Regional Street and encourage active transportation, especially among students.

As a preliminary step to evaluate the potential use of enhancements at crossings for pedestrians, warrant analyses were conducted for Regional Street relative to the need for a High-intensity Activated crossWalK (HAWK), Rectangular Rapid Flash Beacons (RRFB), or other intersection crossing enhancements.

The analysis was based on the HAWK warrants from the California Manual on Uniform Traffic Control Devices (CA MUTCD) as well as Improving Pedestrian Safety at Unsignalized Crossings, from the National Cooperative Highway Research Program (NCHRP) Report 562. These methodologies use the number of pedestrian crossings, the volume of vehicle traffic, vehicle travel speeds and pedestrian crossing distance to determine whether enhanced pedestrian crossing facilities are appropriate. Under existing conditions, warrants are not met since there are few pedestrian crossings. However, it is reasonable to assume that pedestrian use may currently be relatively low given the lack of existing midblock pedestrian crossing infrastructure between the project driveway and Dublin Retail Center to the east.

Therefore, a sensitivity analysis was conducted to determine the number of pedestrians that would need to be present during the peak hour for each location to meet warrants for enhancements. Analysis was performed based
on school p.m. peak hour Near-Term 2024 plus project volumes described in more detail in the following section. It was assumed that vehicles along Regional Street travel at the posted speed limit of 30 miles per hour.

From this sensitivity analysis it was concluded that 20 pedestrians would need to cross Regional Street during the school p.m. peak hour to meet the crosswalk warrant, and 27 pedestrians would be needed to meet the active/enhanced crossing treatment warrant. Given the retail land uses and BART station nearby as well as the future extension of Saint Patrick Way, it is reasonable to assume that the number of pedestrian crossings at this location would increase upon opening of the BASIS School. Therefore, once school operations have begun, further study may be necessary to confirm the number of pedestrian crossings at this location.

Additionally, the Downtown Dublin Specific Plan (DDSP) establishes a goal that pedestrian connections between shopping centers should be encouraged. This is interpreted by City staff to mean that a connected pedestrian network is encouraged between pedestrian-generating land uses such as shopping centers instead of strictly meaning that pedestrian connections should only be between shopping centers.

Therefore, to fulfill the goal of establishing pedestrian connections between land uses, a striped crosswalk is recommended near the project driveway along Regional Street. Any future crosswalk should be located south of the project driveway to minimize the potential for conflicts with vehicles turning left toward Dublin Boulevard and include advance pedestrian pavement markings (high-visibility continental or ladder crosswalks and appropriate "sharks teeth" yield lines) and warning signs consistent with the most recent standards from the CA MUTCD. Application of advance "sharks teeth" yield markings are intended to indicate the preferred vehicle waiting positions thereby preserving driver sight lines in the event that vehicle queues extend beyond the crosswalk from the Regional Street/Dublin Boulevard intersection.

Additionally, a pedestrian pathway between the school buildings and Regional Street is also recommended to provide a clearly marked route between the school and sidewalks on Regional Street since this route is along the shortest path between the school and land uses to the east including the BART station, and various residential units, and retail centers. Any future pedestrian pathway should be constructed to satisfy the minimum federal accessibility requirements as described in The Americans with Disabilities Act (ADA).

Project Effects on Pedestrian Facilities

Given the proximity of commercial and residential uses surrounding the proposed school, as well as the proximity to a BART station, it is reasonable to assume that some students and staff will want to walk, bicycle, and/or use transit to reach the school.

Project Site - The project would include paved walking connections between each building, sports fields and to nearby retail shops along Dublin Boulevard. It is noted that dedicated pedestrian pathways between the project site and Regional Street are not included in the proposed project. Although it is desirable to avoid pedestrian conflicts with vehicles as much as possible, the placement of pedestrian walkways spanning drive-aisles are acceptable based on the availability of unobstructed sight lines between drivers and pedestrians using the walkway, combined with the expected slow operating speeds of vehicles using the parking lots.

Finding - It is reasonable to assume that the pedestrian activity within the study area would increase upon the opening of the BASIS School. According to the NCHRP 562 methodology, a midblock pedestrian crossing with signing and markings only or an active/enhanced crossing treatment would be warranted if 20 or 27 pedestrians, respectively, are to cross Regional Street within the school p.m. peak hour.

Recommendation - Further study to determine whether the installation of a midblock crosswalk, potentially with enhanced crossing treatment, is recommended on Regional Street. A crosswalk at this location would comply with policies described in the Downtown Dublin Specific Plan. The crosswalk should be located along Regional Street south of the project driveway and include advance pedestrian warning signs and pavement markings consistent
with current CA MUTCD standards. A clearly marked pedestrian pathway between the school and sidewalks on Regional Street is also suggested.

Bicycle Facilities

Existing and Planned Bicycle Facilities

The Highway Design Manual, Caltrans, 2020, classifies bikeways into four categories:

- Class I Multi-Use Path - a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- Class II Bike Lane - a striped and signed lane for one-way bike travel on a street or highway.
- Class III Bike Route - signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- Class IV Bikeway - also known as a separated bikeway, a Class IV Bikeway is for the exclusive use of bicycles and includes a separation between the bikeway and the motor vehicle traffic lane. The separation may include, but is not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

In the project area, Class II bike lanes exist on Dublin Boulevard, San Ramon Road, and Regional Street. A Class I Multi-use Path or Class IV Bikeway is proposed along Dublin Boulevard for 4.4 miles between Kelly Canyon Drive and Scarlett Drive. Bicyclists ride in the roadway and/or on sidewalks along all other streets within the project study area. Table 3 summarizes the existing and planned bicycle facilities in the project vicinity, as contained in the Dublin Bicycle and Pedestrian Plan (adopted in January 2023).

Table 3 - Bicycle Facility Summary

Status Facility	Class	Length (miles)	Begin Point	End Point
Existing				
Regional St	II	0.4	Amador Valley Blvd	End of Regional St
San Ramon Rd	II	1.5	Alcosta Blvd	Dublin Blvd
Golden Gate Dr	II	0.2	Dublin Blvd	St Patrick Way
St Patrick Way	II	0.1	Golden Gate Dr	Amador Plaza Rd
Dublin Blvd	II	0.6	Silvergate Dr (750' west)	San Ramon Rd
Dublin Blvd	III	1.0	San Ramon Rd	Alamo Canal Trail
Planned				
Downtown Dublin	I	0.7	San Ramon Rd	Amador Plaza Rd
Dublin Blvd	I/IV	4.4	Kelly Canyon Dr	Scarlett Dr
St Patrick Way	II	0.2	Regional St	Golden Gate Dr

Source: Dublin Bicycle and Pedestrian Plan, 2023

Project Effects on Bicycle Facilities

Existing and future bicycle facilities, including bike lanes on San Ramon Road, Saint Patrick Way and Regional Street, together with shared use of minor streets provide adequate access for bicyclists within the vicinity of the project site.

Finding - Bicycle access to the site is adequately served by a network of bicycle facilities.

Transit Facilities

Existing Transit Facilities

The Livermore Amador Valley Transit Authority (LAVTA) Tri-Valley Wheels bus service provides fixed route bus service in Dublin, Pleasanton, and Livermore. The closest stops to the proposed project site serve Wheels Bus Route 30R and are located approximately 0.2 miles east of the project site, with the eastbound stop located at Dublin Boulevard/Regional Street and the westbound at Dublin Boulevard/Golden Gate Drive. Route 30R provides daily service to destinations between West Dublin/Pleasanton Bay Area Rapid Transit (BART) and Livermore.

The West Dublin/Pleasanton BART station is located approximately 0.5 miles from the project site. The station is along the "blue line" that operates direct train service between the Daly City and Dublin/ Pleasanton stations. Connecting service to other BART lines is available via a transfer at the Bay Fair or other stations. Existing transit routes and their operating schedules are summarized in Table 4.
Table 4 - Transit Routes

| Transit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Agency |

Distance to
Stop (mi)

Route

Note: ${ }^{1}$ Defined as the shortest walking distance between the project site and the nearest bus stop Source: wheelsbus.com; bart.gov

Two bicycles can be carried on all LAVTA Tri-Valley Wheels fixed-route buses. Bike rack space is on a first come, first served basis. On BART trains, bicycles are allowed except in the first car or any crowded car. During commuting hours, bikes are not allowed in the first three cars of any train. Cyclists must yield to other passengers and yield priority seating to seniors and people with disabilities.

Paratransit Services

Wheels Dial-A-Ride provides paratransit services to eligible people with disabilities who live in Livermore, Pleasanton, or Dublin. Additionally, BART provides paratransit services through lift vans to people with disabilities who cannot ride BART trains. Paratransit services are provided by both through reservations only.

On-Demand Transportation Services

On-demand private vehicle services, such as Uber and Lyft, are available in the project area 24 hours a day. These private vehicle services can be used for trips both within the local area and to further destinations, including transit stops/stations and local airports.

Project Effects on Transit Facilities

Development sites which are located within one-half mile (2,640 feet) of a transit stop are generally considered to be adequately served by transit. Existing transit routes were reviewed and determined to be adequate to accommodate project-generated transit trips. Existing stops are within an acceptable walking distance of the site and would be accessible via the existing sidewalk network in the study area.

Additionally, per the school's proposed Traffic and Parking Management Plan, up to 30 percent of the students and a portion of the staff are expected to use the free private school bus, which would alleviate the use of the nearby public transit options.

Finding - The project site is adequately served by transit since existing transit stops are less than one-half mile away and students are expected to use the school's private bus service.

Safety Issues

The potential for the project to impact safety was evaluated in terms of the adequacy of sight distance and need for turn lanes at the project accesses as well as the adequacy of stacking space in dedicated turn lanes at the Regional Street/Dublin Boulevard intersection to accommodate additional queuing due to adding projectgenerated trips and need for additional right-of-way controls. This section addresses the third transportation bullet on the CEQA checklist which is whether or not the project would substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

Site Access

The proposed project is primarily accessed via two existing driveways. One of these driveways is located on Dublin Boulevard, approximately 270 feet east of San Ramon Road, while the other is located on Regional Street, approximately 380 feet south of Dublin Boulevard. The Dublin Boulevard driveway has right-turn vehicle access only since the raised median along Dublin Boulevard blocks all left-turn movements. Some drivers may also use one of the two driveways just east of the Earl Anthony Dublin Bowl to access the project site from Regional Street although use of these driveways by school related traffic will be discouraged via the Traffic and Parking Management Plan. All four driveways are shared with several neighboring retail establishments such as Starbucks, The Sleep Number Mattress Store, Video Only and the Earl Anthony Dublin Bowl.

The potential for vehicle conflicts between school-related vehicles and vehicles related to these adjacent land uses may occur within the internal aisleways of the surrounding parking lots. However, given that vehicle speeds within the parking lot and connecting internal aisles are relatively slow the potential for conflicts or collisions between circulating vehicles is not expected to result in a safety issue as these areas have unobstructed sight lines and are consistent with typical driver behavior and expectation within a parking lot.

An evaluation of vehicle delays leaving the site was conducted at each driveway which identified that an average delay of no more than 25.9 seconds per vehicle would be expected once project-related vehicle trips are added to the roadway network during any of the peak hours analyzed. This measure of delay is an acceptable amount that is also consistent with the typical expectations of drivers exiting a parking lot.

Sight Distance

At driveways, a substantially clear line of sight should be maintained between the driver of a vehicle waiting to enter the street and the driver of an approaching vehicle. The sight distances from the project driveways were evaluated based on sight distance criteria contained in the Highway Design Manual published by Caltrans. The recommended sight distances for driveway approaches are based on stopping sight distance and use the approach travel speed as the basis for determining the recommended sight distance. Based on a design speed of 35 mph for Dublin Boulevard, the minimum stopping sight distance needed is 250 feet and based on a design speed of 30 mph for Regional Street, the minimum stopping sight distance needed is 200 feet. A review in the field shows that sight distance at the proposed project driveway location on Dublin Boulevard exceeds 250 feet to the west; sight lines to the east were not evaluated due to the access constraints associated with the existing center median island. Sight distance at the driveway on Regional Street exceeds 200 feet to the north and south. To maintain this sight distance any vegetation near the project's driveways should be trimmed to an appropriate height of less than three feet and trees trimmed so that nothing hangs below a height of seven feet from the surface of the roadway.

For a motorist traveling northbound on Regional Street intending to turn left into the project driveway, the stopping sight distance looking north along Regional Street is also greater than 200 feet, providing adequate
visibility to allow a following driver to observe and react to a vehicle that may slow before moving into the leftturn pocket before entering the driveway.

Finding - Adequate sight distance is available at the proposed project driveway locations to accommodate all turns entering and exiting the site.

Recommendation - To preserve a minimum sight distance of 250 feet at each driveway access point, it is recommended that vegetation along the project frontage be trimmed and maintained.

Queuing

Left-Turn Lane Queuing

The City of Dublin does not prescribe thresholds of significance regarding queue lengths. However, an increase in queue length due to project traffic was considered a potentially adverse condition if the increase would cause the queue to extend out of a dedicated turn lane into a through traffic lane, or the back of queue into a visually restricted area, such as a blind corner, or an adjacent intersection. If queues would already be expected to extend past a dedicated turn lane or into a visually restricted area without project traffic, the lengthening of the queue due to project traffic so that it would exceed a second threshold was considered to constitute a potentially adverse effect.

Regional Street/Dublin Boulevard

Under each scenario, the projected maximum queues in left-turn pockets at the Regional Street/Dublin Boulevard intersection were determined based on the queuing reports as provided by Synchro. Summarized in Table 5 are the predicted left-turn queue lengths for the approaches. Copies of the queuing reports are contained in Appendix A.

Table 5 - Left-Turn Queues at Regional Street/Dublin Boulevard

Study Intersection Approach	Available Storage	95 ${ }^{\text {th }}$ Percentile Queues								
		AM Peak Hour			School PM Peak Hour			PM Peak Hour		
		E	NT	NT+P	E	NT	NT+P	E	NT	NT+P
Regional St										
Northbound Left	120	90	113	346	189	262	418	175	263	452
Southbound Left	125	77	77	77	185	185	185	223	230	230
Dublin Blvd										
Eastbound Left	275	219	220	236	253	265	274	238	252	246
Westbound Left	220	64	64	109	99	99	117	125	125	138

Notes: All distances are measured in feet; $\mathrm{E}=$ existing conditions; NT = near-term conditions; NT+P = near-term plus project conditions; Bold text = queue length exceeds available storage

Left-turn lane storage is expected to exceed the existing storage capacity on both the northbound and southbound approaches of Regional Street during the school p.m. and p.m. peak hour with or without the addition of project-related trips. Any vehicle spillover during these peak hours would restrict access to the adjacent through lanes as well as at nearby driveways serving neighboring retail centers.

The addition of project-related traffic would increase the queue length by 233 feet during the a.m. peak hour which exceeds the storage length of the northbound left-turn lane. Based on the previously described definition,
this is considered a significant impact for the a.m. peak hour only. To increase the storage capacity of the northbound left-turn vehicle movements, on-street parking could be eliminated and the pavement striping along Regional Street modified to provide a 130-foot-long northbound left-turn lane which transitions from a center two-way left-turn lane (TWLTL) together with the existing travel lane and Class II bike lane in each direction.

The traffic signals along Dublin Boulevard between San Ramon Road and Dougherty Road are controlled by an adaptive signal timing system capable of adjusting signal timing parameters based on real-time traffic flows along the corridor. All signalized intersections along this corridor are currently operating under coordination and, as such, are influenced by each other. Further in-depth study may be necessary to identify any potential changes in service levels or queue lengths attributable to signal timing adjustments combined with the addition of projectrelated trips along Dublin Boulevard.

Finding - Vehicle storage for the southbound and northbound left-turn lanes at the intersection of Regional Street/Dublin Boulevard are expected to exceed the storage capacity with or without the addition of projectrelated trips during the school p.m. and p.m. peak hours. Upon the addition of project-generated traffic, the northbound left-turn lane would also exceed the available storage during the a.m. peak hour. Queue spillback in these lanes would extend beyond the storage space and potentially restrict access to the adjacent through lanes and driveways to neighboring land uses. This would be an adverse condition for the a.m. peak hour only.

Recommendation - On-street parking should be prohibited and the pavement striping along Regional Street modified to provide one travel lane and Class II bike lane in each direction as well as a two-way left-turn lane and 130-foot-long northbound left-turn lane.

In addition to the recommended modifications to pavement striping along Regional Street, adjustments to the signal timing at the intersection of Regional Street/Dublin Boulevard would also reduce the vehicle queue length at the northbound left-turn lane. However, since all signalized intersections along this segment of Dublin Boulevard are operated under coordination it is also recommended that further study be conducted to identify whether any other changes in traffic operations would occur at other signalized intersections along the corridor due to changing timing at this location. Modifications to the pavement striping and signal timing would adequately increase both vehicle storage capacity and throughput for the northbound left-turn movement.

Drop-Off Lane Queuing

The proposed parking area includes a 280 -foot-long drop-off area with storage capacity for 13 vehicles. The dropoff lane queuing was analyzed for the morning drop-off period only because it represents the period with the largest peak hour demand. As school traffic generally experiences short periods within the peak hour with concentrated arrivals and departures before and after the school bells, a peak hour factor adjustment was used to estimate the actual (design) flow rate of vehicles at the drop-off lanes. The use of a peak hour factor adjusts the number of estimated vehicle arrivals to appropriately account for concentrated peaking that is typical for schools. A peak hour factor of 1.0 means traffic levels are evenly spread out over the whole hour, and a lower number of 0.80 or less means traffic spikes for a short period during the hour, such as a school drop-off period.

Based on the school's trip generation forecast there would be 261 vehicles per hour departing during the morning peak hour; these were assumed to be vehicles dropping students off. Vehicle surveys conducted in March 2017 show that the peak hour factor for the BASIS Independent Silicon Valley Campus during the morning drop-off is 0.633 , meaning there is a concentrated peak of traffic just before the school bell. This is equivalent to a design flow rate of 412 vehicles per hour.

A sensitivity test was conducted to determine the slowest service rate that could accommodate the expected demand considering the vehicle stacking area. Through this sensitivity test, it was determined that a service rate of approximately one vehicle discharged every 8.5 seconds would result in a $95^{\text {th }}$ percentile of 13 vehicles in the queue and would have a low probability (5 percent) of exceeding thirteen vehicles in the queue at any point during the drop-off period. Probabilities of 5 percent or less are generally considered to be acceptable. Through
this process, it was determined that the successful operation of the drop-off lanes would rely on the quick discharge of vehicles at a rate no slower than 8.5 seconds per vehicle during peak periods, or about 7.1 vehicles per minute. Discharge rates which are slower than this would increase the probability that the queue would exceed the available storage of the drop-off lanes during the peak periods.

It is also worth noting that it was assumed that the egress from the drop-off lane to either Dublin Boulevard or Regional Street would be uninterrupted and clear of congestion. If a queue exists on the egress route for any reason, the discharge at the drop-off lane would be compromised and the queue length would be extended.

On the rare occasion when the queue exceeds 13 vehicles, any additional vehicles would likely stack up in the parking lot aisles which are able to accommodate at least 24 additional vehicles before extending beyond the project site boundaries. Vehicles attempting to use the aisle would still be able to pass by using the opposing lane, just as they would pass a vehicle waiting for a parking spot to become available in a crowded lot. Given that parking lots are a low-speed environment, the short-term blockage of the drive-aisle is not expected to cause difficulties as it is consistent with typical driver behavior and expectation within a parking lot.

Finding - Based on the estimated arrival rate and service rates, the available storage capacity of the drop-off lanes is expected to be adequate if the drop-off lane can discharge at least one car every 8.5 seconds and vehicles can exit onto either Dublin Boulevard or Regional Street. It is noted that if the queue exceeds 13 vehicles, any additional vehicles will stack up in the project parking lot drive-aisle which is able to accommodate at least 24 additional vehicles.

Traffic and Parking Management Plan

BASIS Independent Schools developed a Traffic and Parking Management Plan (TPMP) based on their experience operating other school campuses in the Bay Area. This plan was reviewed to evaluate its reasonableness for application at this project site.

According to the TPMP, vehicle trip generation will be reduced and parking facilities managed by offering a series of incentives to students and staff along with a system of remediation which is contractually enforceable as stated in the Parent and Student Guidebook. These incentives include access to a free private bus service, staggered bell schedule, extracurricular after-school activities and encouraging use of nearby public transit options. The plan also includes measures to manage both the traffic flow of private vehicles and the use of parking facilities via strictly enforced rules defining parking lot safety policies and the distribution of parking passes to a limited number of students and staff. Parents are contractually obligated to abide by these rules as stated in the Parent and Student Guidebook assigned to each family.

Finding - The proposed Traffic and Parking Management Plan would be reasonably expected to result in acceptable operations.

Capacity Analysis

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersections were analyzed using the signalized methodology published in the Highway Capacity Manual (HCM), Transportation Research Board, $6^{\text {th }}$ edition. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle. The signalized methodology is based on factors including traffic volumes, green time for each movement, phasing, whether the signals are coordinated or not, truck traffic, and pedestrian activity. Average stopped delay per vehicle in seconds is used as the basis for evaluation in this LOS methodology. For the purposes of this study, delays were calculated using signal timing obtained from the City of Dublin.

The project driveways are not defined as intersections, though delays were analyzed using the "Two-Way StopControlled" intersection capacity method from the HCM. This methodology estimates the level of average delay in seconds per vehicle for each minor turning movement.

The ranges of delay associated with the various levels of service are indicated in Table 6.

Table 6 - Signalized Intersection Level of Service Criteria

LOS A Delay of 0 to 10 seconds. Most vehicles arrive during the green phase, so do not stop at all.
LOS B Delay of 10 to 20 seconds. More vehicles stop than with LOS A, but many drivers still do not have to stop.
LOS C Delay of 20 to 35 seconds. The number of vehicles stopping is significant, although many still pass through without stopping.

LOS D Delay of 35 to 55 seconds. The influence of congestion is noticeable, and most vehicles have to stop.
LOS E Delay of 55 to 80 seconds. Most, if not all, vehicles must stop and drivers consider the delay excessive.
LOS F Delay of more than 80 seconds. Vehicles may wait through more than one cycle to clear the intersection.
Reference: Highway Capacity Manual, $6^{\text {th }}$ Edition, Transportation Research Board, 2018

Traffic Operation Standards

The City of Dublin established that the performance standard for signalized intersections is to maintain no worse than LOS D as acceptable according to their Transportation Impact Analysis Guidelines, 2021. This translates to an allowable average delay of 55 seconds. However, intersections within the Downtown Dublin Specific Plan area may operate at LOS E or worse if the safety for pedestrians and bicyclists is maintained and effects to transit travel speeds is minimized. This area includes the study intersections of Dublin Boulevard/San Ramon Road and Dublin Boulevard/Regional Street.

Existing Conditions

The Existing Conditions scenario provides an evaluation of current operation based on existing traffic volumes during the a.m., school p.m., and p.m. peak periods. Copies of the traffic count data sheets are provided in

Appendix B. This condition does not include project-generated traffic volumes. Volume data was collected on November 10, 2022, while local schools were in session.

Under Existing Conditions both intersections operate acceptably at LOS C or D during all peak hours. A summary of the intersection Level of Service calculations and delays is contained in Table 7. The existing traffic volumes are shown in Figure 3, and copies of the calculations are provided in Appendix C.

Table 7 - Existing Peak Hour Intersection Levels of Service

Study Intersection	AM Peak		School PM Peak		PM Peak		
	Delay	LOS	Delay	LOS	Delay	LOS	
1.	San Ramon Rd/Dublin Blvd	44.5	D	39.7	D	43.7	C
2.	Regional St/Dublin Blvd	35.6	D	24.4	C	23.6	C

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service

Near-Term Conditions

The Near-Term Conditions scenario includes existing traffic volumes plus the forecasted traffic demand due to local and regional growth in the near-term, defined to occur by the year 2024. These turning movement forecasts were developed using roadway segment volumes from the 2020 and 2040 City of Dublin travel demand models to determine approach and departure link growth, then applying the Furness methodology to determine individual turning movements at each intersection. It is noted that traffic associated with the future H-Mart project (located at 7884 Dublin Boulevard) was also added to the expected near-term volumes. Under these projected volumes both intersections would continue to operate acceptably at LOS C or D during all three peak hours. These results are summarized in Table 8 and Near-Term volumes are shown in Figure 4.

Table 8 - Near-Term Peak Hour Intersection Levels of Service

Study Intersection	AM Peak		School PM Peak		PM Peak		
	Delay	LOS	Delay	LOS	Delay	LOS	
1.	San Ramon Rd/Dublin Blvd	45.0	D	40.1	D	45.3	D
2.	Regional St/Dublin Blvd	36.3	D	27.0	C	25.9	C

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service

Transportation Impact Study for the BASIS School Project
Figure 3 - Existing Traffic Volumes

Transportation Impact Study for the BASIS School Project
Figure 4 - Near-Term Traffic Volumes

Project Conditions

Near-Term plus Project Conditions

With project-related traffic added to volumes for Near-Term Conditions, both intersections would be expected to continue operating at LOS C or D during all peak hours studied, except that Regional Street/Dublin Boulevard would operate at LOS F during the a.m. peak hour. These results are summarized in Table 9. Project traffic volumes are shown in Figure 5. Near-term plus Project volumes are shown in Figure 6.

Table 9 - Near-Term and Near-Term plus Project Peak Hour Intersection Levels of Service

Study Intersection	Near-Term Conditions						Near-Term plus Project					
	AM Peak		Sch PM Peak		PM Peak		AM Peak		Sch PM Peak		PM Peak	
	Delay	LOS										
1. San Ramon Rd/Dublin Blvd	45.0	D	40.1	D	45.3	D	48.2	D	41.3	D	48.2	D
2. Regional St/Dublin Blvd	36.3	D	27.0	C	25.9	C	82.1	F	35.9	D	31.0	C

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Bold text = deficient operation; Sch = School

Finding - The addition of project-generated traffic results in no change in LOS for San Ramon Road/Dublin Boulevard during any of the peak hours studied but would degrade operation from LOS D to F during the a.m. peak hour and from LOS C to D during the school p.m. peak hour at Regional Street/Dublin Boulevard. However, neither of these situations are considered an adverse condition based on the traffic operation standards described in the City's Downtown Dublin Specific Plan, which state that intersections within the specific plan area may operate at LOS E or worse.

Transportation Impact Study for the BASIS School Project
Figure 5 - Project Traffic Volumes

Transportation Impact Study for the BASIS School Project Figure 6 - Near-Term plus Project Traffic Volumes

Conclusions and Recommendations

Conclusions

- The proposed project is expected to generate an average of 2,551 daily trips, with 528 trips during the a.m. peak hour, 240 during the school p.m. peak hour, and 181 during the p.m. peak hour.
- Pedestrian, bicycle, and transit facilities are generally adequate to serve the project, though pedestrian connectivity could be improved to comply with City policy.
- Sight lines at the project driveways are adequate for the approach speeds.
- For the Near-Term Condition, left-turn lane storage for the northbound and southbound Regional Street approaches to Dublin Boulevard are exceeded with or without the project during the school p.m. and p.m. peak hour scenarios considered. Upon the addition of project-generated traffic, the northbound left-turn lane storage would be exceeded during the a.m. peak hour; this is potentially an adverse condition.
- Based on the estimated arrival rate and service rate for the morning drop-off period, the available storage capacity of the drop-off lanes is expected to be adequate if the drop-off lane can discharge at least one vehicle every 8.5 seconds.
- The Traffic and Parking Management Plan prepared by the BASIS school is reasonably expected to achieve acceptable operations.
- Both signalized intersections currently operate acceptably and are expected to continue doing so under NearTerm 2024 volumes.
- Upon adding project-generated traffic to the near-term volumes, the operation at the Regional Street/Dublin Boulevard intersection would degrade from LOS D to F during the a.m. peak hour.

Recommendations

- Further study is recommended to determine whether the installation of a midblock crosswalk, potentially with enhanced crossing treatments, is appropriate on Regional Street. A midblock crosswalk at Regional Street would comply with policies described in the Downtown Dublin Specific Plan. The crosswalk should be located along Regional Street south of the project driveway and include advanced pedestrian warning signs and pavement markings consistent with current CA MUTCD standards. A pedestrian pathway, constructed to satisfy the minimum federal accessibility requirements as described in The Americans with Disabilities Act (ADA), between the school building and sidewalks on Regional Street is also recommended.
- To maintain adequate sight lines, all vegetation near the driveways on Dublin Boulevard and Regional Street should be trimmed to ensure that all landscaping lies below three feet in height or above seven feet.
- Elimination of on-street parking and modification of the pavement striping along Regional Street is recommended to provide one travel lane and one Class II bike lane in each direction as well as a two-way leftturn lane and 130-foot-long northbound left-turn lane and increase vehicle storage capacity for this movement.
- Optimization of traffic signal timing at Regional Street/Dublin Boulevard would increase vehicle throughput and reduce vehicle queue lengths at the Regional Street approach. Further study is recommended to determine whether traffic operations elsewhere along the corridor would degrade since all of the signalized intersections along the Dublin Boulevard corridor are under coordination and influence each other.

Study Participants and References

Study Participants

Principal in Charge
Senior Traffic Engineer
Assistant Engineer
Graphics
Editing/Formatting
Quality Control

Mark E. Spencer, PE
Kenny Jeong, PE
Valerie Haines, EIT
Cameron Wong
Hannah Yung-Boxdell, Jessica Bender
Dalene J. Whitlock, PE, PTOE

References

Bay Area Rapid Transit, https://www.bart.gov/schedules
California Manual on Uniform Traffic Control Devices for Streets and Highways Revision 6, California Department of Transportation, 2021
California Vehicle Code, State of California, 2018,
http://leginfo.legislature.ca.gov/faces/codesTOCSelected.xhtml?tocCode=VEH\&tocTitle=+Vehicle+Code+$+\mathrm{VEH}$
Downtown Dublin Specific Plan, City of Dublin, 2022
Dublin Bicycle and Pedestrian Plan (draft), City of Dublin, 2022
General Plan, Chapter 5: Land Use and Circulation, City of Dublin. 2020
Highway Capacity Manual, $6^{\text {th }}$ Edition, Transportation Research Board, 2018
Highway Design Manual, $7^{\text {th }}$ Edition, California Department of Transportation, 2020
Improving Pedestrian Safety at Unsignalized Crossings, National Cooperative Highway Research Program (NCHRP)
Report 562, Transportation Research Board, 2006
Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No. 562, Transportation Research Board, 1985
Livermore Amador Valley Transit Authority, http://www.lavta.org/
Transportation Impact Analysis Guidelines, City of Dublin, 2021
Trip Generation Manual, $11^{\text {th }}$ Edition, Institute of Transportation Engineers, 2021
Wheels Bus, https://wheelsbus.com/routes-and-schedules/
DUB900-3

This page intentionally left blank

Appendix A

Queuing Worksheets

This page intentionally left blank

3: Regional St \& Dublin Blvd
12/20/2022

	$\stackrel{ }{ }$	\rightarrow	\downarrow	\leftarrow	4	\uparrow	7		\downarrow	\checkmark
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	158	741	32	553	51	9	13	42	18	86
v/c Ratio	0.60	0.20	0.36	0.14	0.48	0.09	0.07	0.33	0.17	0.51
Control Delay	65.1	6.9	74.5	11.9	77.8	62.2	0.8	68.7	65.4	22.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	65.1	6.9	74.5	11.9	77.8	62.2	0.8	68.7	65.4	22.7
Queue Length 50th (tt)	143	49	29	56	46	8	0	38	16	0
Queue Length 95th (t)	219	134	64	86	90	27	0	77	42	54
Internal Link Dist (tt)		354		631		271			478	
Turn Bay Length (tt)	275		220		120		110	125		110
Base Capacity (vph)	264	3775	148	3858	195	483	526	195	533	505
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.60	0.20	0.22	0.14	0.26	0.02	0.02	0.22	0.03	0.17
Intersection Summary										

Queues
3: Regional St \& Dublin Blvd
12/20/2022

| Lane Group | | EBL | EBT | WBL | WBT | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

Intersection Summary

3: Regional St \& Dublin Blvd
12/20/2022

	$\stackrel{ }{ }$	\rightarrow	\downarrow	\bullet	4	\uparrow	7		\downarrow	\checkmark
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	185	1205	80	811	125	43	65	169	43	192
v/c Ratio	0.77	0.39	0.59	0.24	0.69	0.35	0.30	0.70	0.28	0.62
Control Delay	67.7	19.4	79.3	17.6	79.8	69.7	3.5	73.2	63.0	17.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	67.7	19.4	79.3	17.6	79.8	69.7	3.5	73.2	63.0	17.0
Queue Length 50th (tt)	163	249	72	105	112	38	0	151	37	0
Queue Length 95th (tt)	238	298	125	158	175	78	0	223	76	75
Internal Link Dist (tt)		354		631		271			478	
Turn Bay Length (tt)	275		220		120		110	125		110
Base Capacity (vph)	277	3067	197	3431	287	546	551	259	496	559
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.67	0.39	0.41	0.24	0.44	0.08	0.12	0.65	0.09	0.34
Intersection Summary										

Queues
3: Regional St \& Dublin Blvd
12/20/2022

	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group	160	783	32	597	70	9	13	42	18	86
Lane Group Flow (vph)	0.60	0.21	0.36	0.16	0.56	0.08	0.07	0.32	0.17	0.51

$\begin{array}{lrrrrrrrrrl}\text { V/C Ratio } & 0.60 & 0.21 & 0.36 & 0.16 & 0.56 & 0.08 & 0.07 & 0.32 & 0.17 & 0.51 \\ \text { Control Delay } & 64.7 & 7.9 & 74.5 & 12.8 & 79.1 & 60.1 & 0.7 & 68.2 & 65.4 & 22.7\end{array}$
$\begin{array}{lrrrrrrrrrr} & 64.7 & 7.9 & 74.5 & 12.8 & 79.1 & 60.1 & 0.7 & 68.2 & 65.4 & 22.7 \\ \text { Queue Delay } & 0.0 & 0.9 & 0.0 & 0.8 & 0.0 & 0.0 & 0 . & 0.0 & 0.0 & \end{array}$
$\begin{array}{lrrrrrrrrrr}\text { Cueue Delay } & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text { Total Delay } & 64.7 & 7.9 & 74.5 & 12.8 & 79.1 & 60.1 & 0.7 & 68.2 & 65.4 & 22.7\end{array}$
$\begin{array}{lrrrrrrrrrr}\text { Queue Length 50th (tt) } & 145 & 59 & 29 & 64 & 63 & 8 & 0 & 38 & 16 & 0 \\ \text { Queue Length 95th }(\mathrm{tt}) & 220 & 148 & 64 & 97 & 113 & 26 & 0 & 77 & 42 & 54\end{array}$
Internal Link Dist (ft)
$\begin{array}{llllllllllll}\text { Turn Bay Length (tt) } & 275 & 354 & & 220 & 631 & 120 & 271 & 110 & 125 & & 110\end{array}$
$\begin{array}{lllllllllll}\text { Base Capacity (vph) } & 268 & 3716 & 148 & 3787 & 195 & 483 & 526 & 199 & 533 & 505\end{array}$ Starvation Cap Reduc
Spillback Cap Reductn
$\begin{array}{lrrrrrrrrrr}\text { Storage Cap Reductn } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text { Reduced v/c Ratio } & 0.60 & 0.21 & 0.22 & 0.16 & 0.36 & 0.02 & 0.02 & 0.21 & 0.03 & 0.17\end{array}$
Intersection Summary

	\Rightarrow	\rightarrow	\downarrow	4	4	4	P	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	202	1092	58	709	212	41	122	134	27	175
v/c Ratio	0.77	0.36	0.51	0.22	0.78	0.20	0.43	0.71	0.23	0.66
Control Delay	71.1	20.0	77.9	20.5	75.7	57.0	13.4	79.6	65.2	20.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	71.1	20.0	77.9	20.5	75.7	57.0	13.4	79.6	65.2	20.8
Queue Length 50th (tt)	184	190	52	95	188	35	0	120	24	0
Queue Length 95th (tt)	265	290	99	155	262	69	57	185	54	73
Internal Link Dist (ft)		354		631		271			478	
Turn Bay Length (ft)	275		220		120		110	125		110
Base Capacity (vph)	287	3035	199	3186	308	531	545	254	506	552
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.70	0.36	0.29	0.22	0.69	0.08	0.22	0.53	0.05	0.32
Intersection Summary										

Queues
3: Regional St \& Dublin Blvd
12/20/2022

Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	197	1289	80	832	199	43	65	169	43	193
V/c Ratio	0.77	0.44	0.59	0.26	0.82	0.27	0.27	0.69	0.34	0.67
Control Delay	65.6	20.8	79.3	19.8	84.2	62.6	2.6	73.4	67.8	19.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	65.6	20.8	79.3	19.8	84.2	62.6	2.6	73.4	67.8	19.7
Queue Length 50th (tt)	167	297	72	115	178	37	0	151	38	0
Queue Length 95th (tt)	252	314	125	170	263	74	0	$\# 230$	76	76
Internal Link Dist (tt)		354		631		271			478	
Turn Bay Length ((t)	275		220		120		110	125		110
Base Capacity (vph)	283	2958	197	3261	288	546	551	261	496	560
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.70	0.44	0.41	0.26	0.69	0.08	0.12	0.65	0.09	0.34

$\frac{\text { Intersection Summary }}{\text { \# 95th percentile volume exceeds capacity, queue may be longer. }}$
95th percentile volume exceeds capacity, que
Queue shown is maximum after two cycles.

	\Rightarrow	\rightarrow	\checkmark	\leftarrow	4	\uparrow	7		\downarrow	\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	177	843	67	597	295	15	20	42	28	86
V/C Ratio	0.57	0.36	0.54	0.27	0.59	0.03	0.04	0.43	0.25	0.49
Control Delay	69.1	22.9	78.6	31.4	50.3	39.0	0.1	76.8	67.3	21.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	69.1	22.9	78.6	31.4	50.3	39.0	0.1	76.8	67.3	21.9
Queue Length 50th (tt)	160	124	60	102	241	10	0	38	25	0
Queue Length 95th (tt)	236	220	109	134	346	29	0	77	57	54
Internal Link Dist (ft)		354		631		271			478	
Turn Bay Length (tt)	275		220		120		110	125		110
Base Capacity (vph)	308	2372	153	2469	502	565	601	186	533	505
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.57	0.36	0.44	0.24	0.59	0.03	0.03	0.23	0.05	0.17
Intersection Summary										

Queues
3: Regional St \& Dublin Blvd

Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	211	1119	74	709	311	44	125	134	32	175
V/c Ratio	0.78	0.44	0.57	0.27	0.72	0.12	0.30	0.71	0.26	0.66
Control Delay	72.2	27.8	78.9	27.5	59.4	48.5	10.0	79.6	66.2	20.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	72.2	27.8	78.9	27.5	59.4	48.5	10.0	79.6	66.2	20.5
Queue Length 50th (tt)	193	238	66	118	259	33	0	120	28	0
Queue Length 95th (tt)	274	311	117	158	$\# 418$	72	57	185	61	73
Internal Link Dist (tt)		354		631		271			478	
Turn ayy Length (ft)	275		220		120		110	125		110
Base Capacity (vph)	294	2537	199	2581	433	531	547	254	506	552
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storae Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.72	0.44	0.37	0.27	0.72	0.08	0.23	0.53	0.06	0.32

Intersection Summary
95th percentile volume exceeds capacity, que
Queue shown is maximum after two cycles.

Queues
3: Regional St \& Dublin Blvd

Queue shown is maximum after two cycles.

This page intentionally left blank

Appendix B

Intersection Peak Hour Volumes

This page intentionally left blank

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Dublin Blvd				Dublin Blvd				San Ramon Rd					San Ramon Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	1	2	0	0	2	1	2	0	2		3	4	0	0	0	2	19	0
7:15 AM	0	0	0	1	0	5	0	0	0	5		4	2	0	0	2	0	19	0
7:30 AM	0	2	0	0	0	2	0	0	0	0		4	3	0	0	2	0	13	0
7:45 AM	0	0	1	3	0	2	0	1	0	1		6	3	0	0	1	0	18	69
8:00 AM	0	2	0	1	0	1	0	1	0	1		5	2	0	0	1	1	15	65
8:15 AM	0	0	0	1	0	4	0	1	0	0		2	1	0	0	1	0	10	56
8:30 AM	0	0	1	1	0	0	0	1	0	1		1	2	0	0	1	1	9	52
8:45 AM	0	0	1	1	1	5	0	3	0	3		2	1	0	0	5	1	23	57
Count Total	0	5	5	8	1	21	1	9	0	13	2	27	18	0	0	13	5	126	0
Peak Hour	0	2	2	6	0	7	0	4	0	3	1	14	8	0	0	4	2	52	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Dublin Blvd				Dublin Blvd				San Ramon Rd					San Ramon Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT	TH		RT		
7:00 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
7:15 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
7:30 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
7:45 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
8:00 AM	0		1	0	0		0	0	0		0		0	0	1		0	2	2
8:15 AM	0		0	0	0		0	0	0		2		0	0	0		0	2	4
8:30 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	4
8:45 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	4
Count Total	0		1	0	0		0	0	0		2		0	0	1		0	4	0
Peak Hour	0		1	0	0		0	0	0		2		0	0	1		0	4	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Dublin Blvd				Dublin Blvd				San Ramon Rd				San Ramon Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		RT	UT	LT	TH	RT		
2:00 PM	0	1	1	2	0	5	2	1	0	0	4	2	0	0	2	1	21	0
2:15 PM	0	0	1	0	0	3	0	2	0	1	5	2	0	0	3	2	19	0
2:30 PM	0	0	0	2	0	5	0	0	0	2		3	0	0	2	0	15	0
2:45 PM	0	3	2	1	0	2	1	0	0	1	2	1	0	1	1	0	15	70
3:00 PM	0	0	1	1	0	1	2	0		1		3	0	0	0	0	11	60
3:15 PM	0	0	0	2	0	0	0	0		2	4	2	0	1	1	0	12	53
3:30 PM	0	1	0	0	0	0	0	0	0	1	2	3	0	0	3	0	10	48
3:45 PM	0	0	1	0	0	1	1	0	0	1	1	4	0	0	1	0	10	43
Count Total	0	5	6	8	0	17	6	3	0	9	2	20	0	2	13	3	113	0
Peak Hour	0	1	2	3	0	2	3	0	0	5	9	12	0	1	5	0	43	0
Two-Hour Count Summaries - Bikes																		
Interval Start	Dublin Blvd				Dublin Blvd				San Ramon Rd				San Ramon Rd				15-minTotal	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	LT		TH	RT														
2:00 PM	0		0	0	0		0	0	0		1	0	0		2	0	3	0
2:15 PM	0		0	0	0		1	0	0		0	0	0		0	0	1	0
2:30 PM	0			0	0			0	0		0	0	0		0	1	1	0
2:45 PM	0		0	0	0		0	1	0		0	0	0		1	1	3	8
3:00 PM	0		0	0	0		0	0	0		0	0	1		0	0	1	6
3:15 PM	0		0	0	0		0	0	0		0	0	0		1	0	1	6
3:30 PM	0		1	0	0		0	0	0		1	0	0		0	0	2	7
3:45 PM	0		1	0	0		0	1	0		0	0	0		0	1	3	7
Count Total	0		2	0	0		1	2	0		2	0	1		4	3	15	0
Peak Hour	0		2	0	0		0	1	0		1	0	1		1	1	7	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																		

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Dublin Blvd				Dublin Blvd				San Ramon Rd					San Ramon Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		RT		
4:00 PM	0	0	0	0	0	1	1	0	0	2		1	2	0	0	1	0	8	0
4:15 PM	0	1	0	0	0	0	1	0	0	1		1	5	0	0	1	0	10	0
4:30 PM	0	0	2	1	0	2	1	1	0	0		1	2	1	0	0	0	11	0
4:45 PM	0	0	0	0	0	3	2	0	0	1		0	4	0	1	1	0	12	41
5:00 PM	0	0	0	1	0	3	0	0	0	0		1	6	0	0	1	0	12	45
5:15 PM	0	0	0	0	0	3	0	0	0	0		1	3	0	0	1	0	8	43
5:30 PM	0	0	0	0	0	1	0	1	0	1		1	1	0	0	1	0	6	38
5:45 PM	0	0	0	0	0	3	0	0	0	0		0	2	0	0	0	0	5	31
Count Total	0	1	2	2	0	16	5	2	0	5	6	6	25	1	1	6	0	72	0
Peak Hour	0	0	0	1	0	10	2	1	0	2		3	14	0	1	4	0	38	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Dublin Blvd				Dublin Blvd				San Ramon Rd					San Ramon Rd				15-minTotal	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT		TH	RT		
4:00 PM	0		0	0	0		0	0	0		1		0	0		0	0	1	0
4:15 PM	0		0	0	0		0	0	0		0		0	0		0	0	0	0
4:30 PM	0		0	0	0		0	0	0		1		0	0		0	0	1	0
4:45 PM	0		0	0	0		0	0	0		0		0	0		0	0	0	2
5:00 PM	0		0	0	0		0	0	0		0		0	0			0	0	1
5:15 PM	0		0	0	0		0	0	0		0		0	0		0	0	0	1
5:30 PM	0		0	0	0		0	0	0		0		0	0		0	0	0	0
5:45 PM	0		0	0	0		0	0	0		0		0	0		0	0	0	0
Count Total	0		0	0	0		0	0	0		2		0	0		0	0	2	0
Peak Hour	0		0	0	0		0	0	0		0		0	0		0	0	0	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

Project Driveway
Dublin Blvd

Peak Hour

しみx
Date: 11/10/2022
Count Period: 7:00 AM to 9:00 AM Peak Hour: 8:00 AM to 9:00 AM

Two-Hour Count Summaries

Interval Start		Dublin Blvd				Dublin Blvd				Project Driveway				N/A				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	0	90	26	0	0	88	0	0	0	0	12	0	0	0	0	216	0
7:15	AM	0	0	87	27	0	0	113	0	0	0	0	25	0	0	0	0	252	0
7:30	AM	0	0	102	34	0	0	124	0	0	0	0	27	0	0	0	0	287	0
7:45	AM	0	0	156	32	0	0	122	0	0	0	0	30	0	0	0	0	340	1,095
8:00	AM	0	0	192	29	0	0	141	0	0	0	0	26	0	0	0	0	388	1,267
8:15	AM	0	0	193	45	0	0	172	0	0	0	0	40	0	0	0	0	450	1,465
8:30	AM	0	0	157	37	0	0	150	0	0	0	0	30	0	0	0	0	374	1,552
8:45	AM	0	0	152	28	0	0	189	0	0	0	0	36	0	0	0	0	405	1,617
Count	Total	0	0	1,129	258	0	0	1,099	0	0	0	0	226	0	0	0	0	2,712	0
	All	0	0	694	139	0	0	652	0	0	0	0	132	0	0	0	0	1,617	0
Peak Hour	HV	0	0	8	1	0	0	14	0	0	0	0	0	0	0	0	0	23	0
	HV\%	-	-	1\%	1\%	-	-	2\%	-	-	-	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	6	5	0	0	11	0	0	0	0	0	0	0	1	0	1
7:15 AM	2	3	0	0	5	0	0	0	0	0	0	0	2	0	2
7:30 AM	3	4	1	0	8	0	0	0	0	0	0	0	1	0	1
7:45 AM	4	5	0	0	9	0	0	0	0	0	0	0	0	0	0
8:00 AM	2	5	0	0	7	1	1	0	0	2	0	0	4	0	4
8:15 AM	1	2	0	0	3	0	0	0	0	0	0	0	2	1	3
8:30 AM	3	2	0	0	5	0	0	0	0	0	0	0	1	1	2
8:45 AM	3	5	0	0	8	0	0	0	0	0	0	0	4	1	5
Count Total	24	31	1	0	56	1	1	0	0	2	0	0	15	3	18
Peak Hr	9	14	0	0	23	1	1	0	0	2	0	0	11	3	14

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Dublin Blvd				Dublin Blvd				Project Driveway				N/A				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	5	1	0	0	5	0	0	0	0	0	0	0	0	0	11	0
7:15 AM	0	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0	5	0
7:30 AM	0	0	2	1	0	0	4	0	0	0	0	1	0	0	0	0	8	0
7:45 AM	0	0	4	0	0	0	5	0	0	0	0	0	0	0	0	0	9	33
8:00 AM	0	0	2	0	0	0	5	0	0	0	0	0	0	0	0	0	7	29
8:15 AM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	3	27
8:30 AM	0	0	3	0	0	0	2	0	0	0	0	0	0	0	0	0	5	24
8:45 AM	0	0	2	1	0	0	5	0	0	0	0	0	0	0	0	0	8	23
Count Total	0	0	21	3	0	0	31	0	0	0	0	1	0	0	0	0	56	0
Peak Hour	0	0	8	1	0	0	14	0	0	0	0	0	0	0	0	0	23	0

Two-Hour Count Summaries - Bikes

Interval Start	Dublin Blvd			Dublin Blvd			Project Driveway			N/A			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	1	0	0	1	0	0	0	0	0	0	0	2	2
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Count Total	0	1	0	0	1	0	0	0	0	0	0	0	2	0
Peak Hour	0	1	0	0	1	0	0	0	0	0	0	0	2	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Dublin Blvd				Dublin Blvd				Project Driveway				N/A				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	0	225	14	0	0	222	0	0	0	0	13	0	0	0	0	474	0
2:15	PM	0	0	230	13	0	0	181	0	0	0	0	12	0	0	0	0	436	0
2:30	PM	0	0	246	19	0	0	221	0	0	0	0	16	0	0	0	0	502	0
2:45	PM	0	0	247	22	0	0	191	0	0	0	0	14	0	0	0	0	474	1,886
3:00	PM	0	0	265	22	0	0	213	0	0	0	0	19	0	0	0	0	519	1,931
3:15	PM	0	0	245	14	0	0	217	0	0	0	0	19	0	0	0	0	495	1,990
3:30	PM	0	0	247	17	0	0	228	0	0	0	0	16	0	0	0	0	508	1,996
3:4	PM	0	0	300	19	0	0	213	0	0	0	0	16	0	0	0	0	548	2,070
Count	Total	0	0	2,005	140	0	0	1,686	0	0	0	0	125	0	0	0	0	3,956	0
	All	0	0	1,057	72	0	0	871	0	0	0	0	70	0	0	0	0	2,070	0
Peak Hour	HV	0	0	13	2	0	0	5	0	0	0	0	0	0	0	0	0	20	0
	HV\%	-	-	1\%	3\%	-	-	1\%	-	-	-	-	0\%	-	-	-	-	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.															
Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	3	8	1	0	12	0	0	0	0	0	0	0	2	1	3
2:15 PM	3	3	0	0	6	0	0	0	0	0	0	0	7	1	8
2:30 PM	4	7	0	0	11	0	0	0	0	0	0	0	1	2	3
2:45 PM	4	5	0	0	9	0	0	0	0	0	0	0	8	2	10
3:00 PM	4	3	0	0	7	1	0	0	0	1	0	0	0	1	1
3:15 PM	3	0	0	0	3	0	0	0	0	0	0	0	5	0	5
3:30 PM	3	0	0	0	3	1	0	0	0	1	0	0	0	0	0
3:45 PM	5	2	0	0	7	3	1	0	0	4	0	0	4	2	6
Count Total	29	28	1	0	58	5	1	0	0	6	0	0	27	9	36
Peak Hr	15	5	0	0	20	5	1	0	0	6	0	0	9	3	12

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Dublin Blvd				Dublin Blvd				Project Driveway				N/A				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	0	3	0	0	0	8	0	0	0	0	1	0	0	0	0	12	0
2:15 PM	0	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0	6	0
2:30 PM	0	0	4	0	0	0	7	0	0	0	0	0	0	0	0	0	11	0
2:45 PM	0	0	4	0	0	0	5	0	0	0	0	0	0	0	0	0	9	38
3:00 PM	0	0	3	1	0	0	3	0	0	0	0	0	0	0	0	0	7	33
3:15 PM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	30
3:30 PM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	22
3:45 PM	0	0	4	1	0	0	2	0	0	0	0	0	0	0	0	0	7	20
Count Total	0	0	27	2	0	0	28	0	0	0	0	1	0	0	0	0	58	0
Peak Hour	0	0	13	2	0	0	5	0	0	0	0	0	0	0	0	0	20	0

Two-Hour Count Summaries - Bikes

Interval Start	Dublin Blvd			Dublin Blvd			Project Driveway			N/A			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	1
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	2
3:45 PM	0	3	0	0	1	0	0	0	0	0	0	0	4	6
Count Total	0	5	0	0	1	0	0	0	0	0	0	0	6	0
Peak Hour	0	5	0	0	1	0	0	0	0	0	0	0	6	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Dublin Blvd				Dublin Blvd				Project Driveway				N/A				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:00	PM	0	0	257	14	0	0	199	0	0	0	0	22	0	0	0	0	492	0
4:15	PM	0	0	294	17	0	0	204	0	0	0	0	16	0	0	0	0	531	0
4:30	PM	0	0	279	13	0	0	210	0	0	0	0	12	0	0	0	0	514	0
4:45	PM	0	0	327	17	0	0	240	0	0	0	0	10	0	0	0	0	594	2,131
5:00	PM	0	0	327	9	0	0	261	0	0	0	0	16	0	0	0	0	613	2,252
5:15	PM	0	0	333	21	0	0	263	0	0	0	0	13	0	0	0	0	630	2,351
5:30	PM	0	0	286	9	0	0	231	0	0	0	0	16	0	0	0	0	542	2,379
5:45	PM	0	0	306	11	0	0	227	0	0	0	0	11	0	0	0	0	555	2,340
Count	Total	0	0	2,409	111	0	0	1,835	0	0	0	0	116	0	0	0	0	4,471	0
	All	0	0	1,273	56	0	0	995	0	0	0	0	55	0	0	0	0	2,379	0
Peak	HV	0	0	14	1	0	0	11	0	0	0	0	2	0	0	0	0	28	0
	HV\%	-	-	1\%	2\%	-	-	1\%	-	-	-	-	4\%	-	-	-	-	1\%	0

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	1	4	0	0	5	0	0	0	0	0	0	0	6	0	6
4:15 PM	5	1	0	0	6	0	0	0	0	0	0	0	1	1	2
4:30 PM	4	5	0	0	9	0	0	0	0	0	0	0	3	0	3
4:45 PM	5	3	0	0	8	0	0	0	0	0	0	0	8	1	9
5:00 PM	6	5	1	0	12	0	0	0	0	0	0	0	2	1	3
5:15 PM	3	2	1	0	6	0	0	0	0	0	0	0	2	0	2
5:30 PM	1	1	0	0	2	0	0	0	0	0	0	0	1	2	3
5:45 PM	2	2	0	0	4	0	0	0	0	0	0	0	2	0	2
Count Total	27	23	2	0	52	0	0	0	0	0	0	0	25	5	30
Peak Hr	15	11	2	0	28	0	0	0	0	0	0	0	13	4	17

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Dublin Blvd				Dublin Blvd				Project Driveway				N/A				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	1	0	0	0	4	0	0	0	0	0	0	0	0	0	5	0
4:15 PM	0	0	5	0	0	0	1	0	0	0	0	0	0	0	0	0	6	0
4:30 PM	0	0	4	0	0	0	5	0	0	0	0	0	0	0	0	0	9	0
4:45 PM	0	0	5	0	0	0	3	0	0	0	0	0	0	0	0	0	8	28
5:00 PM	0	0	6	0	0	0	5	0	0	0	0	1	0	0	0	0	12	35
5:15 PM	0	0	2	1	0	0	2	0	0	0	0	1	0	0	0	0	6	35
5:30 PM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	28
5:45 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	4	24
Count Total	0	0	26	1	0	0	23	0	0	0	0	2	0	0	0	0	52	0
Peak Hour	0	0	14	1	0	0	11	0	0	0	0	2	0	0	0	0	28	0

Two-Hour Count Summaries - Bikes

Interval Start	Dublin Blvd			Dublin Blvd			Project Driveway			N/A			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Dublin Blvd				Dublin Blvd				Regional St					Regional St				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	0	3	2	0	0	4	0	0	1		0	0	0	0	0	0	10	0
7:15 AM	0	0	2	0	0	0	2	0	0	1		1	0	0	0	1	0	7	0
7:30 AM	0	0	3	0	0	0	4	0	0	0		1	0	0	0	0	0	8	0
7:45 AM	0	0	3	1	0	0	3	0	0	1		0	1	0	0	0	0	9	34
8:00 AM	0	0	2	0	0	0	5	0	0	0		0	0	0	0	0	0	7	31
8:15 AM	0	0	1	0	0	0	3	0	0	0		0	0	0	0	0	0	4	28
8:30 AM	0	0	3	0	0	0	2	0	0	0		0	0	0	0	0	0	5	25
8:45 AM	0	0	1	1	0	0	4	1	0	1		1	0	0	0	0	0	9	25
Count Total	0	0	18	4	0	0	2	1	0	4		3	1	0	0	1	0	59	0
Peak Hour	0	0	7	1	0	0	14	1	0	1		1	0	0	0	0	0	25	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Dublin Blvd				Dublin Blvd				Regional St					Regional St				$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT			RT		
7:00 AM	0		0	0	0		0	0	0		0		0	0			0	0	0
7:15 AM	0		0	0	0		0	0	0		0		0	0			0	0	0
7:30 AM	0			0	0			0	0		0		0	0			0	0	0
7:45 AM	0		0	0	0		0	0	0		0		0	0			0	0	0
8:00 AM	0		1	0	0		1	0	0		0		0	0			0	2	2
8:15 AM	0		0	0	0		0	0	0		0		0	1			0	1	3
8:30 AM	0		0	0	0		0	0	0		0		0	0			0	0	3
8:45 AM	0		0	0	0		0	0	0		0		0	0			0	0	3
Count Total	0		1	0	0		1	0	0		0		0	1			0	3	0
Peak Hour	0		1	0	0		1	0	0		0		0	1			0	3	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

www.idaxdata.com

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Dublin Blvd				Dublin Blvd				Regional St					Regional St				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT		TH	RT		
4:00 PM	0	0	1	0	0	0	2	0	0	1		0	0	0		1	0	5	0
4:15 PM	0	0	5	0	0	0	0	0	0	0		0	0	0		0	1	6	0
4:30 PM	0	1	3	0	0	0	5	0	0	0		0	1	0		1	0	11	0
4:45 PM	0	0	5	0	0	0	2	0	0	0		0	0	0		1	1	9	31
5:00 PM	1	0	5	1	0	0	3	1	0	1		0	0	0		0	0	13	39
5:15 PM	0	0	3	0	0	0	2	0	0	0		0	0	0		0	0	5	38
5:30 PM	0	0	1	0	0	1	1	0	0	0		0	0	0		0	1	4	31
5:45 PM	0	0	2	0	0	0	2	0	0	0		0	0	0		0	0	4	26
Count Total	1	1	25	1	0	1	17	1	0	2		0	1	0		3	3	57	0
Peak Hour	1	0	14	1	0	1	8	1	0	1		0	0	0		1	2	31	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Dublin Blvd				Dublin Blvd				Regional St					Regional St				$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT	TH		RT		
4:00 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
4:15 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
4:30 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
4:45 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:00 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:15 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:30 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:45 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Count Total	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Peak Hour	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Project Driveway				N/A				Regional St				Regional St				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	4	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	9
8:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	8
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:45 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	3	4
Count Total	0	0	0	0	0	0	0	0	0	0	8	0	0	0	5	0	13	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	4	0

Two-Hour Count Summaries - Bikes

Interval Start	Project Driveway			N/A			Regional St			Regional St			$\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries

Interval Start		Project Driveway				N/A				Regional St				Regional St				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	11	0	1	0	0	0	0	0	0	15	0	0	0	10	10	47	0
2:15	PM	0	7	0	0	0	0	0	0	0	0	10	0	0	0	12	12	41	0
2:30	PM	0	8	0	1	0	0	0	0	0	0	12	0	0	0	10	9	40	0
2:45	PM	0	14	0	2	0	0	0	0	0	0	21	0	1	0	7	7	52	180
3:00	PM	0	8	0	1	0	0	0	0	0	0	33	0	0	0	5	6	53	186
3:15	PM	0	7	0	0	0	0	0	0	0	0	36	0	0	0	9	7	59	204
3:30	PM	0	5	0	0	0	0	0	0	0	1	43	0	0	0	12	8	69	233
3:45	PM	0	6	0	0	0	0	0	0	0	1	44	0	0	0	18	7	76	257
Count	Total	0	66	0	5	0	0	0	0	0	2	214	0	1	0	83	66	437	0
	All	0	26	0	1	0	0	0	0	0	2	156	0	0	0	44	28	257	0
Peak Hour	HV	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	2	0
	HV\%	-	0\%		100\%	-	-	-	-	-	0\%	1\%	-	-	-	0\%	0\%	1\%	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	0	0	1	1	2	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	1	1	2	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	1	2	3	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
3:00 PM	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2
Count Total	1	0	5	4	10	0	0	0	0	0	0	0	2	0	2
Peak Hr	1	0	1	0	2	0	0	0	0	0	0	0	2	0	2

Two-Hour Count Summaries - Heavy Vehicles																		
Interval Start	Project Driveway				N/A				Regional St				Regional St				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	3	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	8
3:00 PM	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	2	8
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Count Total	0	0	0	1	0	0	0	0	0	0	5	0	0	0	4	0	10	0
Peak Hour	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	2	0

Two-Hour Count Summaries - Bikes

Interval Start	Project Driveway			N/A			Regional St			Regional St			$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Project Driveway				N/A				Regional St				Regional St				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Count Total	0	1	0	0	0	0	0	0	0	0	2	0	0	0	3	0	6	0
Peak Hour	0	1	0	0	0	0	0	0	0	0	2	0	0	0	2	0	5	0

Two-Hour Count Summaries - Bikes

Interval Start	Project Driveway			N/A			Regional St			Regional St			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Appendix C

Intersection Level of Service Calculations

This page intentionally left blank

HCM 6th Signalized 3: Regional St \& Dub	Inters	$\begin{aligned} & \text { ection } \\ & \text { d } \\ & \hline \end{aligned}$										12/13/2022
	$\stackrel{ }{ }$	\rightarrow	7	\dagger	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个t		\%	ttt		\%	\uparrow	F	\%	\uparrow	F
Traffic Volume (veh/h)	145	654	28	29	464	45	47	8	12	39	17	79
Future Volume (veh/h)	145	654	28	29	464	45	47	8	12	39	17	79
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.97	1.00		0.98	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1885	1841	1900	1856	1870	1870	1707	1900	1900	1900	1900
Adj Flow Rate, veh/h	158	711	21	32	504	46	51	9	2	42	18	19
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	1	4	0	3	2	2	13	0	0	0	0
Cap, veh/h	149	3724	110	41	3994	355	66	150	139	55	154	126
Arrive On Green	0.03	0.24	0.24	0.02	0.67	0.67	0.04	0.09	0.09	0.03	0.08	0.08
Sat Flow, veh/h	1810	5133	151	1810	5996	534	1781	1707	1577	1810	1900	1552
Grp Volume(v), veh/h	158	475	257	32	400	150	51	9	2	42	18	19
Grp Sat Flow(s),veh/h/n	1810	1716	1853	1810	1596	1742	1781	1707	1577	1810	1900	1552
Q Serve(g_s), s	11.5	15.4	15.5	2.5	4.3	4.4	4.0	0.7	0.2	3.2	1.2	1.6
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	11.5	15.4	15.5	2.5	4.3	4.4	4.0	0.7	0.2	3.2	1.2	1.6
Prop In Lane	1.00		0.08	1.00		0.31	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	149	2489	1345	41	3189	1161	66	150	139	55	154	126
V/C Ratio(X)	1.06	0.19	0.19	0.78	0.13	0.13	0.77	0.06	0.01	0.77	0.12	0.15
Avail Cap(c_a), veh/h	149	2489	1345	149	3189	1161	197	491	454	187	533	436
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	68.1	20.5	20.5	68.1	8.5	8.5	66.8	58.5	58.3	67.4	59.7	59.8
Incr Delay (d2), s/veh	91.6	0.2	0.3	11.1	0.1	0.2	7.1	0.2	0.0	8.2	0.4	0.7
Initial Q Delay(d3),S/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	9.4	7.2	7.8	1.3	1.5	1.7	1.9	0.3	0.1	1.6	0.6	0.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	159.7	20.7	20.8	79.1	8.6	8.8	73.9	58.7	58.3	75.6	60.1	60.5
LnGrp LOS	F	C	C	E	A	A	E	E	E	E	E	E
Approach Vol, veh/h		890			582			62			79	
Approach Delay, s/veh		45.4			12.5			71.2			68.4	
Approach LOS		D			B			E			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	8.7	17.0	7.7	106.6	9.7	16.1	16.0	98.3				
Change Period ($Y+R \mathrm{C}$), s	4.5	*4.7	4.5	5.0	4.5	* 4.7	4.5	5.0				
Max Green Setting (Gmax), s	14.5	*40	11.5	55.0	15.5	*39	11.5	55.0				
Max Q Clear Time (g_c+11), s	5.2	2.7	4.5	17.5	6.0	3.6	13.5	6.4				
Green Ext Time (p_c), s	0.0	0.0	0.0	7.6	0.0	0.1	0.0	5.8				
Intersection Summary												
HCM 6th Ctrl Delay			35.6									
HCM 6th LOS			D									
Notes												

*HCM 6 th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized 1：San Ramon Rd \＆	nters Dubli	ction Blvd										3／2022
	\Rightarrow	\rightarrow	\geqslant	t	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\uparrow \uparrow$	＂${ }^{\text {a }}$	＊＊＊	\uparrow	＊	\％${ }^{*}$	¢个¢	F ${ }^{\text {P }}$	介＊	个个¢	F
Traffic Volume（veh／h）	184	224	234	574	206	103	246	639	781	137	440	162
Future Volume（veh／h）	184	224	234	574	206	103	246	639	781	137	440	162
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.96	1.00		0.99	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1885	1900	1870	1885	1870	1885	1885	1900
Adj Flow Rate，veh／h	190	231	72	592	212	75	254	659	375	141	454	67
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	0	1	0	2	1	2	1	1	0
Cap，veh／h	243	357	275	692	312	257	313	2901	1930	193	2720	838
Arrive On Green	0.07	0.10	0.10	0.23	0.28	0.28	0.09	0.56	0.56	0.06	0.53	0.53
Sat Flow，veh／h	3483	3582	2766	5103	1885	1552	3456	5147	2752	3483	5147	1586
Grp Volume（v），veh／h	190	231	72	592	212	75	254	659	375	141	454	67
Grp Sat Flow（s），veh／h／ln	1742	1791	1383	1701	1885	1552	1728	1716	1376	1742	1716	1586
Q Serve（g＿s），s	7.5	8.7	3.4	15.6	14.0	5.3	10.1	9.0	6.6	5.6	6.4	2.9
Cycle Q Clear（ $\mathrm{c}_{\text {＿}}$ ），s	7.5	8.7	3.4	15.6	14.0	5.3	10.1	9.0	6.6	5.6	6.4	2.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	243	357	275	692	312	257	313	2901	1930	193	2720	838
V／C Ratio（X）	0.78	0.65	0.26	0.86	0.68	0.29	0.81	0.23	0.19	0.73	0.17	0.08
Avail Cap（c＿a），veh／h	373	998	770	802	619	510	543	2901	1930	373	2720	838
HCM Platoon Ratio	1.00	1.00	1.00	1.67	1.67	1.67	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	64.1	60.7	58.3	52.8	47.4	44.2	62.5	15.3	7.3	65.1	17.1	16.2
Incr Delay（d2），s／veh	5.8	2.8	0.7	8.7	3.7	0.9	5.1	0.2	0.2	5.2	0.1	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	3.5	4.1	1.2	6.7	6.3	2.1	4.6	3.5	1.9	2.6	2.5	1.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	69.8	63.5	59.0	61.5	51.1	45.1	67.5	15.5	7.6	70.3	17.2	16.4
LnGrp LOS	E	E	E	E	D	D	E	B	A	E	B	B
Approach Vol，veh／h		493			879			1288			662	
Approach Delay，s／veh		65.3			57.6			23.4			28.4	
Approach LOS		E			E			C			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	12.8	84.3	24.0	18.9	17.7	79.4	14.8	28.2				
Change Period（ $Y+R \mathrm{c}$ ），s	5.0	5.4	5.0	5.0	5.0	5.4	5.0	5.0				
Max Green Setting（Gmax），s	15.0	43.6	22.0	39.0	22.0	36.6	15.0	46.0				
Max Q Clear Time（g＿c＋11），s	7.6	11.0	17.6	10.7	12.1	8.4	9.5	16.0				
Green Ext Time（p＿c），s	0.2	9.8	1.4	2.5	0.6	4.6	0.3	2.2				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6 th LOS			39.7									
			D									

BASIS School TIS	Synchro 11 Report
2 －Existing Mid－Day PM	Page 2

HCM 6th Signalized 3: Regional St \& Dub	$\operatorname{lin} \mathrm{Bl}$	ction d										/2022
	$\stackrel{ }{*}$	\rightarrow	7	\checkmark	\leftarrow	4	4	\dagger	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个性		\%	ttt		\%	\uparrow	F'	\%	\uparrow	7
Traffic Volume (veh/h)	181	889	69	55	556	97	130	39	116	127	26	165
Future Volume (veh/h)	181	889	69	55	556	97	130	39	116	127	26	165
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.99	1.00		0.98	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1885	1900	1900	1885	1870	1885	1856	1900	1900	1900	1900
Adj Flow Rate, veh/h	191	936	62	58	585	94	137	41	43	134	27	48
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	1	0	0	1	2	1	3	0	0	0	0
Cap, veh/h	212	3373	223	75	3470	540	161	97	83	158	95	79
Arrive On Green	0.23	1.00	1.00	0.04	0.61	0.61	0.09	0.05	0.05	0.09	0.05	0.05
Sat Flow, veh/h	1810	4923	325	1810	5696	886	1795	1856	1584	1810	1900	1574
Grp Volume(v), veh/h	191	652	346	58	497	182	137	41	43	134	27	48
Grp Sat Flow(s),veh/h/ln	1810	1716	1817	1810	1621	1719	1795	1856	1584	1810	1900	1574
Q Serve(g_s), s	14.3	0.0	0.0	4.4	6.2	6.5	10.5	3.0	3.7	10.2	1.9	4.2
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	14.3	0.0	0.0	4.4	6.2	6.5	10.5	3.0	3.7	10.2	1.9	4.2
Prop In Lane	1.00		0.18	1.00		0.52	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	212	2351	1245	75	2963	1047	161	97	83	158	95	79
V/C Ratio(X)	0.90	0.28	0.28	0.77	0.17	0.17	0.85	0.42	0.52	0.85	0.28	0.61
Avail Cap(c_a), veh/h	265	2351	1245	200	2963	1047	289	534	456	252	506	419
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.8	0.0	0.0	66.5	11.9	12.0	62.8	64.3	64.6	63.0	64.1	65.2
Incr Delay (d2), s/veh	24.1	0.3	0.6	6.2	0.1	0.4	4.7	3.5	5.9	7.8	1.9	8.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	7.1	0.1	0.2	2.2	2.3	2.6	5.0	1.5	1.6	5.1	1.0	1.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	76.9	0.3	0.6	72.7	12.0	12.3	67.5	67.7	70.5	70.8	66.0	74.0
LnGrp LOS	E	A	A	E	B	B	E	E	E	E	E	E
Approach Vol, veh/h		1189			737			221			209	
Approach Delay, s/veh		12.7			16.9			68.1			70.9	
Approach LOS		B			B			E			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$, s	16.7	12.0	10.3	100.9	17.1	11.7	20.9	90.3				
Change Period ($Y+R \mathrm{c}$), s	4.5	*4.7	4.5	5.0	4.5	* 4.7	4.5	5.0				
Max Green Setting (Gmax), s	19.5	*40	15.5	46.0	22.5	*37	20.5	41.0				
Max Q Clear Time (g_c+11), s	12.2	5.7	6.4	2.0	12.5	6.2	16.3	8.5				
Green Ext Time (p_c), s	0.1	0.4	0.0	11.8	0.1	0.3	0.1	6.9				
Intersection Summary												
HCM 6th Ctrr Delay			24.4									
HCM 6th LOS			C									
Notes												

*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

[^0]

HCM 6th Signalized Intersection Summary 3: Regional St \& Dublin Blvd											12/13/2022	
	$\stackrel{ }{*}$	\rightarrow	7	\downarrow	\leftarrow	4	4	\dagger	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个		${ }^{7}$	ttt		\%	\uparrow	F	\%	\uparrow	F
Traffic Volume (veh/h)	178	1075	82	77	661	117	120	41	62	162	41	184
Future Volume (veh/h)	178	1075	82	77	661	117	120	41	62	162	41	184
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1900	1900	1885	1870	1885
Adj Flow Rate, veh/h	185	1120	70	80	689	108	125	43	23	169	43	48
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	1	1	1	1	1	1	1	0	0	1	2	1
Cap, veh/h	206	3197	200	101	3351	511	149	108	92	193	152	128
Arrive On Green	0.23	1.00	1.00	0.06	0.59	0.59	0.08	0.06	0.06	0.11	0.08	0.08
Sat Flow, veh/h	1795	4949	309	1795	5709	871	1795	1900	1610	1795	1870	1574
Grp Volume(v), veh/h	185	776	414	80	584	213	125	43	23	169	43	48
Grp Sat Flow(s),veh/h/ln	1795	1716	1828	1795	1621	1716	1795	1900	1610	1795	1870	1574
Q Serve(g_s), s	14.0	0.0	0.0	6.2	7.9	8.2	9.6	3.1	1.9	13.0	3.0	4.0
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	14.0	0.0	0.0	6.2	7.9	8.2	9.6	3.1	1.9	13.0	3.0	4.0
Prop In Lane	1.00		0.17	1.00		0.51	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	206	2216	1180	101	2855	1007	149	108	92	193	152	128
V/C Ratio(X)	0.90	0.35	0.35	0.80	0.20	0.21	0.84	0.40	0.25	0.88	0.28	0.37
Avail Cap(c_a), veh/h	263	2216	1180	199	2855	1007	289	547	463	250	498	419
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	53.1	0.0	0.0	65.3	13.6	13.6	63.3	63.7	63.1	61.5	60.4	60.9
Incr Delay (d2), s/veh	23.1	0.4	0.8	5.3	0.2	0.5	4.7	2.8	1.7	19.6	1.2	2.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	6.9	0.1	0.3	3.0	2.9	3.3	4.6	1.6	0.8	7.0	1.5	1.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	76.2	0.4	0.8	70.6	13.7	14.1	68.0	66.5	64.8	81.1	61.6	63.1
LnGrp LOS	E	A	A	E	B	B	E	E	E	F	E	E
Approach Vol, veh/h		1375			877			191			260	
Approach Delay, s/veh		10.7			19.0			67.3			74.6	
Approach LOS		B			B			E			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$, s	19.6	12.7	12.3	95.4	16.1	16.1	20.6	87.2				
Change Period ($Y+R \mathrm{c}$), s	4.5	*4.7	4.5	5.0	4.5	* 4.7	4.5	5.0				
Max Green Setting (Gmax), s	19.5	* 40	15.5	46.0	22.5	*37	20.5	41.0				
Max Q Clear Time (g_c+11), s	15.0	5.1	8.2	2.0	11.6	6.0	16.0	10.2				
Green Ext Time (p_c), s	0.1	0.3	0.0	15.1	0.1	0.4	0.1	8.2				
Intersection Summary												
HCM 6th Ctrr Delay			23.6									
HCM 6th LOS			C									
Notes												

*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized 1：San Ramon Rd \＆	nters Dubli	ction Blvd										3／2022
	\Rightarrow	\rightarrow	\geqslant	t	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\uparrow \uparrow$	＂${ }^{\text {a }}$	\％${ }^{\text {\％}}$	\uparrow	＊	介＊	¢ヶ¢	F ${ }^{\text {a }}$	介＊	个个¢	F
Traffic Volume（veh／h）	260	226	352	372	184	99	375	547	534	156	588	237
Future Volume（veh／h）	260	226	352	372	184	99	375	547	534	156	588	237
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.99	1.00		0.98	1.00		0.99	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1870	1870	1900	1841	1885	1856	1870	1900	1885	1885
Adj Flow Rate，veh／h	292	254	153	418	207	54	421	615	338	175	661	146
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh，\％	1	1	2	2	0	4	1	3	2	0	1	1
Cap，veh／h	341	553	425	532	308	248	479	2681	1752	228	2350	720
Arrive On Green	0.10	0.15	0.15	0.03	0.05	0.05	0.14	0.53	0.53	0.06	0.46	0.46
Sat Flow，veh／h	3483	3582	2752	5023	1900	1531	3483	5066	2752	3510	5147	1577
Grp Volume（v），veh／h	292	254	153	418	207	54	421	615	338	175	661	146
Grp Sat Flow（s），veh／h／ln	1742	1791	1376	1674	1900	1531	1742	1689	1376	1755	1716	1577
Q Serve（g＿s），s	11.6	9.0	7.0	11.6	15.0	4.7	16.6	9.1	7.2	6.9	11.2	7.8
Cycle Q Clear（ $\mathrm{c}_{\text {＿}}$ ），s	11.6	9.0	7.0	11.6	15.0	4.7	16.6	9.1	7.2	6.9	11.2	7.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	341	553	425	532	308	248	479	2681	1752	228	2350	720
V／C Ratio（X）	0.86	0.46	0.36	0.79	0.67	0.22	0.88	0.23	0.19	0.77	0.28	0.20
Avail Cap（c＿a），veh／h	373	1023	786	718	611	492	572	2681	1752	351	2350	720
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	62.2	53.9	53.0	66.0	62.6	57.7	59.2	17.7	10.6	64.4	23.7	22.8
Incr Delay（d2），s／veh	16.5	0.8	0.7	5.0	3.6	0.6	12.9	0.2	0.2	5.4	0.3	0.6
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	5.9	4.1	2.5	5.5	8.0	1.9	8.1	3.5	2.2	3.2	4.6	3.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	78.6	54.7	53.7	71.0	66.2	58.4	72.2	17.9	10.9	69.8	24.0	23.4
LnGrp LOS	E	D	D	E	E	E	E	B	B	E	C	C
Approach Vol，veh／h		699			679			1374			982	
Approach Delay，s／veh		64.5			68.5			32.8			32.1	
Approach LOS		E			E			C			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	14.1	79.5	19.8	26.6	24.2	69.3	18.7	27.7				
Change Period（ $Y+R \mathrm{c}$ ），s	5.0	5.4	5.0	5.0	5.0	5.4	5.0	5.0				
Max Green Setting（Gmax），s	14.0	45.6	20.0	40.0	23.0	36.6	15.0	45.0				
Max Q Clear Time（g＿c＋11），s	8.9	11.1	13.6	11.0	18.6	13.2	13.6	17.0				
Green Ext Time（p＿c），s	0.2	9.0	1.3	3.3	0.6	6.9	0.2	2.0				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6 th LOS			45.0									
			D									

HCM 6th Signalized 1：San Ramon Rd \＆	nters Dubli	ction Blvd										3／2022
	\Rightarrow	\rightarrow	\geqslant	t	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\uparrow \uparrow$	＂${ }^{\text {a }}$	＊＊）	\uparrow	＊	\％${ }^{*}$	¢ヶ¢	＊${ }^{\text {a }}$	介＊	¢个¢	F
Traffic Volume（veh／h）	195	241	241	638	220	119	249	703	848	154	481	168
Future Volume（veh／h）	195	241	241	638	220	119	249	703	848	154	481	168
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.96	1.00		0.99	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1885	1900	1870	1885	1870	1885	1885	1900
Adj Flow Rate，veh／h	201	248	79	658	227	92	257	725	444	159	496	73
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	0	1	0	2	1	2	1	1	0
Cap，veh／h	254	360	278	744	327	269	316	2817	1913	212	2659	819
Arrive On Green	0.07	0.10	0.10	0.24	0.29	0.29	0.09	0.55	0.55	0.06	0.52	0.52
Sat Flow，veh／h	3483	3582	2766	5103	1885	1553	3456	5147	2752	3483	5147	1586
Grp Volume（v），veh／h	201	248	79	658	227	92	257	725	444	159	496	73
Grp Sat Flow（s），veh／h／ln	1742	1791	1383	1701	1885	1553	1728	1716	1376	1742	1716	1586
Q Serve（g＿s），s	7.9	9.4	3.7	17.4	15.0	6.5	10.2	10.4	8.3	6.3	7.2	3.3
Cycle Q Clear（ $\mathrm{c}_{\text {＿}}$ ），s	7.9	9.4	3.7	17.4	15.0	6.5	10.2	10.4	8.3	6.3	7.2	3.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	254	360	278	744	327	269	316	2817	1913	212	2659	819
V／C Ratio（X）	0.79	0.69	0.28	0.88	0.70	0.34	0.81	0.26	0.23	0.75	0.19	0.09
Avail Cap（c＿a），veh／h	373	998	770	802	619	510	543	2817	1913	373	2659	819
HCM Platoon Ratio	1.00	1.00	1.00	1.67	1.67	1.67	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	63.8	60.9	58.3	51.8	46.5	43.5	62.4	16.7	7.9	64.7	18.1	17.1
Incr Delay（d2），s／veh	6.9	3.3	0.8	11.4	3.8	1.1	5.1	0.2	0.3	5.3	0.2	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	3.8	4.4	1.3	7.6	6.7	0.1	4.7	4.1	2.4	2.9	2.9	1.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	70.7	64.2	59.1	63.3	50.2	44.5	67.5	16.9	8.1	70.0	18.3	17.4
LnGrp LOS	E	E	E	E	D	D	E	B	A	E	B	B
Approach Vol，veh／h		528			977			1426			728	
Approach Delay，s／veh		65.9			58.5			23.3			29.5	
Approach LOS		E			E			C			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	13.5	82.0	25.4	19.1	17.8	77.7	15.2	29.3				
Change Period（ $Y+R \mathrm{c}$ ），s	5.0	5.4	5.0	5.0	5.0	5.4	5.0	5.0				
Max Green Setting（Gmax），s	15.0	43.6	22.0	39.0	22.0	36.6	15.0	46.0				
Max Q Clear Time（g＿c＋11），s	8.3	12.4	19.4	11.4	12.2	9.2	9.9	17.0				
Green Ext Time（p＿c），s	0.2	11.1	1.0	2.7	0.6	5.1	0.3	2.4				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6 th LOS			40.1									
			D									

HCM 6th Signalized 3: Regional St \& Dub	$\operatorname{lin} \mathrm{Bl}$	ction d										/2022
	$\stackrel{ }{*}$	\rightarrow	7	t	\leftarrow	4	4	\dagger	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个t		\%	ttt		\%	\uparrow	F	\%	\uparrow	F
Traffic Volume (veh/h)	192	936	102	55	577	97	201	39	116	127	26	166
Future Volume (veh/h)	192	936	102	55	577	97	201	39	116	127	26	166
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.99	1.00		0.99	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1885	1900	1900	1885	1870	1885	1856	1900	1900	1900	1900
Adj Flow Rate, veh/h	202	985	96	58	607	94	212	41	43	134	27	49
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	1	0	0	1	2	1	3	0	0	0	0
Cap, veh/h	223	3058	297	75	3213	483	236	176	150	158	96	80
Arrive On Green	0.25	1.00	1.00	0.04	0.56	0.56	0.13	0.09	0.09	0.09	0.05	0.05
Sat Flow, veh/h	1810	4757	462	1810	5727	860	1795	1856	1587	1810	1900	1575
Grp Volume(v), veh/h	202	710	371	58	513	188	212	41	43	134	27	49
Grp Sat Flow(s),veh/h/ln	1810	1716	1788	1810	1621	1723	1795	1856	1587	1810	1900	1575
Q Serve(g_s), s	15.2	0.0	0.0	4.4	7.2	7.5	16.3	2.9	3.5	10.2	1.9	4.3
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	15.2	0.0	0.0	4.4	7.2	7.5	16.3	2.9	3.5	10.2	1.9	4.3
Prop In Lane	1.00		0.26	1.00		0.50	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	223	2206	1150	75	2729	967	236	176	150	158	96	80
V/C Ratio(X)	0.91	0.32	0.32	0.77	0.19	0.19	0.90	0.23	0.29	0.85	0.28	0.61
Avail Cap(c_a), veh/h	265	2206	1150	200	2729	967	289	534	457	252	506	419
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.0	0.0	0.0	66.5	15.1	15.1	59.9	58.7	59.0	63.0	64.0	65.1
Incr Delay (d2), s/veh	26.8	0.4	0.7	6.2	0.2	0.4	23.0	0.8	1.2	7.8	1.9	8.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	7.7	0.1	0.2	2.2	2.7	3.1	8.9	1.4	1.5	5.1	1.0	1.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	78.8	0.4	0.7	72.7	15.2	15.6	82.9	59.5	60.2	70.8	65.9	74.0
LnGrp LOS	E	A	A	E	B	B		E	E	E	E	E
Approach Vol, veh/h		1283			759			296			210	
Approach Delay, s/veh		12.8			19.7			76.4			70.9	
Approach LOS		B			B			E			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$, s	16.7	18.0	10.3	95.0	22.9	11.8	21.7	83.6				
Change Period ($Y+R \mathrm{c}$), s	4.5	*4.7	4.5	5.0	4.5	*4.7	4.5	5.0				
Max Green Setting (Gmax), s	19.5	*40	15.5	46.0	22.5	*37	20.5	41.0				
Max Q Clear Time (g_c+11), s	12.2	5.5	6.4	2.0	18.3	6.3	17.2	9.5				
Green Ext Time (p_c), s	0.1	0.4	0.0	13.2	0.1	0.3	0.1	7.1				
Intersection Summary												
HCM 6th Ctrr Delay			27.0									
HCM 6th LOS			C									
Notes												

*HCM 6 th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized 1：San Ramon Rd \＆	nters Dubli	ction Blvd										3／2022
	\Rightarrow	\rightarrow	\geqslant	t	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\uparrow \uparrow$	「＂	\％${ }^{\text {\％}}$	\uparrow	＊	介＊	¢ヶ¢	＊${ }^{\text {a }}$	介＊	ヶ个¢	F
Traffic Volume（veh／h）	260	264	352	477	221	178	375	547	641	237	588	237
Future Volume（veh／h）	260	264	352	477	221	178	375	547	641	237	588	237
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.99	1.00		0.98	1.00		0.99	1.00		0.99
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1870	1870	1900	1841	1885	1856	1870	1900	1885	1885
Adj Flow Rate，veh／h	292	297	153	536	248	143	421	615	458	266	661	146
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh，\％	1	1	2	2	0	4	1	3	2	0	1	1
Cap，veh／h	341	557	428	638	351	283	479	2441	1680	316	2235	685
Arrive On Green	0.10	0.16	0.16	0.04	0.06	0.06	0.14	0.48	0.48	0.09	0.43	0.43
Sat Flow，veh／h	3483	3582	2752	5023	1900	1535	3483	5066	2752	3510	5147	1577
Grp Volume（v），veh／h	292	297	153	536	248	143	421	615	458	266	661	146
Grp Sat Flow（s），veh／h／ln	1742	1791	1376	1674	1900	1535	1742	1689	1376	1755	1716	1577
Q Serve（g＿s），s	11.6	10.7	7.0	14.8	17.9	12.6	16.6	10.0	10.9	10.4	11.7	8.1
Cycle Q Clear（ $\mathrm{c}_{\text {＿}}$ ），s	11.6	10.7	7.0	14.8	17.9	12.6	16.6	10.0	10.9	10.4	11.7	8.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	341	557	428	638	351	283	479	2441	1680	316	2235	685
V／C Ratio（X）	0.86	0.53	0.36	0.84	0.71	0.50	0.88	0.25	0.27	0.84	0.30	0.21
Avail Cap（c＿a），veh／h	373	1023	786	718	611	493	572	2441	1680	351	2235	685
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	62.2	54.4	52.9	65.6	62.0	59.5	59.2	21.4	12.8	62.7	25.7	24.7
Incr Delay（d2），s／veh	16.5	1.1	0.7	8.6	3.7	2.0	12.9	0.2	0.4	15.5	0.3	0.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	5.9	4.9	2.5	7.2	9.6	5.4	8.1	4.0	3.4	5.3	4.8	3.2
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	78.6	55.6	53.6	74.2	65.7	61.5	72.2	21.6	13.2	78.3	26.0	25.4
LnGrp LOS	E	E	D	E	E	E	E	C	B	E	C	C
Approach Vol，veh／h		742			927			1494			1073	
Approach Delay，s／veh		64.2			70.0			33.3			38.9	
Approach LOS		E			E			C			D	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	17.6	72.9	22.8	26.8	24.2	66.2	18.7	30.8				
Change Period（ $Y+R \mathrm{c}$ ），s	5.0	5.4	5.0	5.0	5.0	5.4	5.0	5.0				
Max Green Setting（Gmax），s	14.0	45.6	20.0	40.0	23.0	36.6	15.0	45.0				
Max Q Clear Time（g＿c＋11），s	12.4	12.9	16.8	12.7	18.6	13.7	13.6	19.9				
Green Ext Time（p＿c），s	0.1	10.0	1.0	3.7	0.6	6.9	0.2	2.8				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6 th LOS			48.2									
			D									

BASIS School TIS	Synchro 11 Report
7 －Near－Term＋Project AM	Page 2

HCM 6th Signalized 3: Regional St \& Dub	Inters	$\begin{aligned} & \text { ection } \\ & \text { d } \\ & \hline \end{aligned}$										12/13/2022
	$\stackrel{ }{ }$	\rightarrow	7	t	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个t		\%	ttt		7	\uparrow	F	\%	\uparrow	F
Traffic Volume (veh/h)	163	708	67	62	504	45	271	14	18	39	26	79
Future Volume (veh/h)	163	708	67	62	504	45	271	14	18	39	26	79
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.97	1.00		0.99	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1885	1841	1900	1856	1870	1870	1707	1900	1900	1900	1900
Adj Flow Rate, veh/h	177	770	64	67	548	46	295	15	9	42	28	19
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	1	4	0	3	2	2	13	0	0	0	0
Cap, veh/h	149	3028	250	86	3575	294	197	277	258	55	155	127
Arrive On Green	0.03	0.21	0.21	0.05	0.59	0.59	0.11	0.16	0.16	0.03	0.08	0.08
Sat Flow, veh/h	1810	4832	399	1810	6041	496	1781	1707	1592	1810	1900	1552
Grp Volume(v), veh/h	177	545	289	67	432	162	295	15	9	42	28	19
Grp Sat Flow(s),veh/h/n	1810	1716	1800	1810	1596	1750	1781	1707	1592	1810	1900	1552
Q Serve(g_s), s	11.5	18.6	18.8	5.1	5.7	5.8	15.5	1.0	0.7	3.2	1.9	1.6
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	11.5	18.6	18.8	5.1	5.7	5.8	15.5	1.0	0.7	3.2	1.9	1.6
Prop In Lane	1.00		0.22	1.00		0.28	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	149	2150	1128	86	2833	1036	197	277	258	55	155	127
V/C Ratio(X)	1.19	0.25	0.26	0.78	0.15	0.16	1.50	0.05	0.03	0.77	0.18	0.15
Avail Cap(c_a), veh/h	149	2150	1128	149	2833	1036	197	491	458	187	533	436
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	68.1	28.1	28.2	66.0	12.8	12.9	62.3	49.6	49.4	67.4	59.9	59.8
Incr Delay (d2), s/veh	134.2	0.3	0.5	5.7	0.1	0.3	247.9	0.1	0.1	8.2	0.7	0.7
Initial Q Delay(d3),S/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	11.2	8.7	9.3	2.5	2.0	2.4	20.6	0.5	0.3	1.6	1.0	0.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	202.3	28.4	28.7	71.7	12.9	13.2	310.2	49.6	49.5	75.6	60.6	60.4
LnGrp LOS	F	C	C	E	B	B	F	D	D	E	E	E
Approach Vol, veh/h		1011			661			319			89	
Approach Delay, s/veh		58.9			19.0			290.6			67.6	
Approach LOS		E			B			F			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	8.7	27.4	11.1	92.7	20.0	16.1	16.0	87.9				
Change Period ($Y+\mathrm{Rc}$), s	4.5	*4.7	4.5	5.0	4.5	*4.7	4.5	5.0				
Max Green Setting (Gmax), s	14.5	*40	11.5	55.0	15.5	*39	11.5	55.0				
Max Q Clear Time (g_c+11), s	5.2	3.0	7.1	20.8	17.5	3.9	13.5	7.8				
Green Ext Time (p_c), s	0.0	0.1	0.0	8.8	0.0	0.2	0.0	6.3				
Intersection Summary												
HCM 6th Ctrl Delay			82.1									
HCM 6th LOS			F									
Notes												

*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

BASIS School TIS

Synchro 11 Repor
7 - Near-Term + Project AM

HCM 6th Signalized 1：San Ramon Rd \＆	nters	ction Blvd	umn									3／2022
	$\stackrel{ }{ }$	\rightarrow	7	t	\leftarrow	4	4	\dagger	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\uparrow \uparrow$	「＂	${ }^{*}{ }^{\text {\％}}$	\uparrow	F	\％${ }^{*}$	¢ヶ¢	＊${ }^{\text {P }}$	\％${ }^{\text {\％}}$	¢个¢	F
Traffic Volume（veh／h）	195	259	241	686	237	155	249	703	897	191	481	168
Future Volume（veh／h）	195	259	241	686	237	155	249	703	897	191	481	168
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.97	1.00		0.99	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1885	1885	1885	1900	1885	1900	1870	1885	1870	1885	1885	1900
Adj Flow Rate，veh／h	201	267	79	707	244	129	257	725	495	197	496	73
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh，\％	1	1	1	0	1	0	2	1	2	1	1	0
Cap，veh／h	254	382	295	778	351	290	316	2693	1865	250	2592	799
Arrive On Green	0.07	0.11	0.11	0.25	0.31	0.31	0.09	0.52	0.52	0.07	0.50	0.50
Sat Flow，veh／h	3483	3582	2766	5103	1885	1556	3456	5147	2752	3483	5147	1586
Grp Volume（v），veh／h	201	267	79	707	244	129	257	725	495	197	496	73
Grp Sat Flow（s），veh／h／ln	1742	1791	1383	1701	1885	1556	1728	1716	1376	1742	1716	1586
Q Serve（g＿s），s	7.9	10.1	3.7	18.8	15.9	9.3	10.2	10.9	10.0	7.8	7.4	3.4
Cycle Q Clear（ $\mathrm{g}_{\text {＿}}$ ），s	7.9	10.1	3.7	18.8	15.9	9.3	10.2	10.9	10.0	7.8	7.4	3.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	254	382	295	778	351	290	316	2693	1865	250	2592	799
V／C Ratio（X）	0.79	0.70	0.27	0.91	0.70	0.45	0.81	0.27	0.27	0.79	0.19	0.09
Avail Cap（c＿a），veh／h	373	998	771	802	619	511	543	2693	1865	373	2592	799
HCM Platoon Ratio	1.00	1.00	1.00	1.67	1.67	1.67	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	63.8	60.4	57.5	51.2	44.7	42.5	62.4	18.5	9.0	63.9	19.1	18.1
Incr Delay（d2），s／veh	6.9	3.3	0.7	14.3	3.5	1.5	5.1	0.2	0.3	6.5	0.2	0.2
Initial Q Delay（d3），S／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	3.8	4.7	1.3	8.3	7.1	3.5	4.7	4.3	2.9	3.6	3.0	1.3
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	70.7	63.6	58.2	65.6	48.3	44.0	67.5	18.8	9.3	70.4	19.2	18.3
LnGrp LOS	E	E	E	E	D	D	E	B	A	E	B	B
Approach Vol，veh／h		547			1080			1477			766	
Approach Delay，s／veh		65.5			59.1			24.1			32.3	
Approach LOS		E			E			C			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	15.1	78.7	26.3	19.9	17.8	75.9	15.2	31.1				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ）， s	5.0	5.4	5.0	5.0	5.0	5.4	5.0	5.0				
Max Green Setting（Gmax），s	15.0	43.6	22.0	39.0	22.0	36.6	15.0	46.0				
Max Q Clear Time（g＿c＋11），s	9.8	12.9	20.8	12.1	12.2	9.4	9.9	17.9				
Green Ext Time（p＿c），s	0.3	11.6	0.5	2.9	0.6	5.1	0.3	2.8				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			41.3									

BASIS School TIS	Synchro 11 Report
8 －Near－Term＋Project Mid－Day PM	Page 2

HCM 6th Signalized 3: Regional St \& Dub	Inters lin Bl	$\begin{aligned} & \text { ection } \\ & \text { d } \\ & \hline \end{aligned}$										12/13/2022
	\rangle	\rightarrow	7	t	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个t		\%	ttt		\%	\uparrow	F	\%	\uparrow	7
Traffic Volume (veh/h)	200	948	115	70	577	97	295	42	119	127	30	166
Future Volume (veh/h)	200	948	115	70	577	97	295	42	119	127	30	166
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.99	1.00		0.99	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1885	1900	1900	1885	1870	1885	1856	1900	1900	1900	1900
Adj Flow Rate, veh/h	211	998	110	74	607	94	311	44	46	134	32	49
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	0	1	0	0	1	2	1	3	0	0	0	0
Cap, veh/h	232	2829	311	94	3017	453	289	230	197	158	97	80
Arrive On Green	0.26	1.00	1.00	0.05	0.53	0.53	0.16	0.12	0.12	0.09	0.05	0.05
Sat Flow, veh/h	1810	4692	516	1810	5726	860	1795	1856	1588	1810	1900	1575
Grp Volume(v), veh/h	211	729	379	74	513	188	311	44	46	134	32	49
Grp Sat Flow(s),veh/h/n	1810	1716	1777	1810	1621	1723	1795	1856	1588	1810	1900	1575
Q Serve(g_s), s	15.8	0.0	0.0	5.7	7.8	8.1	22.5	3.0	3.7	10.2	2.3	4.3
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	15.8	0.0	0.0	5.7	7.8	8.1	22.5	3.0	3.7	10.2	2.3	4.3
Prop In Lane	1.00		0.29	1.00		0.50	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	232	2069	1071	94	2562	907	289	230	197	158	97	80
V/C Ratio(X)	0.91	0.35	0.35	0.79	0.20	0.21	1.08	0.19	0.23	0.85	0.33	0.61
Avail Cap(c_a), veh/h	265	2069	1071	200	2562	907	289	534	457	252	506	420
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	51.3	0.0	0.0	65.6	17.5	17.6	58.8	55.0	55.3	63.0	64.1	65.1
Incr Delay (d2), s/veh	28.9	0.5	0.9	5.4	0.2	0.5	75.2	0.5	0.7	7.8	2.4	8.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	8.1	0.1	0.3	2.7	3.0	3.4	16.3	1.4	1.5	5.1	1.2	1.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	80.2	0.5	0.9	71.0	17.7	18.1	134.0	55.5	56.0	70.8	66.5	73.8
LnGrp LOS	F	A	A	E	B	B	F	E	E	E	E	E
Approach Vol, veh/h		1319			775			401			215	
Approach Delay, s/veh		13.4			22.9			116.4			70.8	
Approach LOS		B			C			F			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	16.7	22.1	11.8	89.4	27.0	11.8	22.4	78.8				
Change Period ($Y+\mathrm{Rc}$), s	4.5	*4.7	4.5	5.0	4.5	*4.7	4.5	5.0				
Max Green Setting (Gmax), s	19.5	*40	15.5	46.0	22.5	*37	20.5	41.0				
Max Q Clear Time (g_c+11), s	12.2	5.7	7.7	2.0	24.5	6.3	17.8	10.1				
Green Ext Time (p_c), s	0.1	0.4	0.0	13.7	0.0	0.4	0.1	7.1				
Intersection Summary												
HCM 6th Ctrl Delay			35.9									
HCM 6th LOS			D									
Notes												

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized 	nters Dubli	ction Blvd										3/2022
	\Rightarrow	\rightarrow	\geqslant	t	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\% ${ }^{1}$	个个	" ${ }^{\text {a }}$	\% ${ }^{\text {\% }}$	\uparrow	F	\% ${ }^{\text {\% }}$	¢4¢	F ${ }^{\text {P }}$	7*	¢4¢	F
Traffic Volume (veh/h)	233	373	318	755	249	207	356	877	977	173	461	135
Future Volume (veh/h)	233	373	318	755	249	207	356	877	977	173	461	135
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.97	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1885	1885	1885	1900	1870	1885	1885	1900
Adj Flow Rate, veh/h	248	397	127	803	265	152	379	933	494	184	490	71
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, \%	0	0	0	2	1	1	1	0	2	1	1	0
Cap, veh/h	301	541	424	789	417	343	437	2486	1773	237	2171	678
Arrive On Green	0.09	0.15	0.15	0.26	0.37	0.37	0.13	0.48	0.48	0.07	0.42	0.42
Sat Flow, veh/h	3510	3610	2834	5023	1885	1548	3483	5187	2784	3483	5147	1607
Grp Volume(v), veh/h	248	397	127	803	265	152	379	933	494	184	490	71
Grp Sat Flow(s),veh/h/ln	1755	1805	1417	1674	1885	1548	1742	1729	1392	1742	1716	1607
Q Serve(g_s), s	9.7	14.7	5.6	22.0	16.2	10.4	14.9	16.0	11.0	7.3	8.5	3.7
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	9.7	14.7	5.6	22.0	16.2	10.4	14.9	16.0	11.0	7.3	8.5	3.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap (c), veh/h	301	541	424	789	417	343	437	2486	1773	237	2171	678
V/C Ratio(X)	0.83	0.73	0.30	1.02	0.64	0.44	0.87	0.38	0.28	0.78	0.23	0.10
Avail Cap(c_a), veh/h	376	1006	789	789	619	509	547	2486	1773	373	2171	678
HCM Platoon Ratio	1.00	1.00	1.00	1.67	1.67	1.67	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	63.0	56.9	53.0	51.6	39.5	37.6	60.1	23.1	11.2	64.2	25.9	24.5
Incr Delay (d2), s/veh	11.5	2.8	0.6	36.4	2.3	1.3	11.6	0.4	0.4	5.4	0.2	0.3
Initial Q Delay (d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	4.8	6.9	2.0	11.0	7.0	3.8	7.2	6.5	3.4	3.4	3.5	1.5
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	74.5	59.6	53.5	88.1	41.8	38.9	71.7	23.6	11.6	69.6	26.1	24.8
LnGrp LOS	E	E	D	F	D	D	E	C	B	E	C	C
Approach Vol, veh/h		772			1220			1806			745	
Approach Delay, s/veh		63.4			71.9			30.4			36.7	
Approach LOS		E			E			C			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	14.5	72.5	27.0	26.0	22.6	64.5	17.0	36.0				
Change Period ($Y+R \mathrm{c}$), s	5.0	5.4	5.0	5.0	5.0	5.4	5.0	5.0				
Max Green Setting (Gmax), s	15.0	43.6	22.0	39.0	22.0	36.6	15.0	46.0				
Max Q Clear Time (g_c+11), s	9.3	18.0	24.0	16.7	16.9	10.5	11.7	18.2				
Green Ext Time (p_c), s	0.3	13.0	0.0	4.3	0.6	4.9	0.3	3.1				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6 th LOS			48.2									
			D									

BASIS School TIS

9 - Near-Term + Project PN

HCM 6th Signalized 3: Regional St \& Dub	$\operatorname{lin} \mathrm{Bl}$	ction d										/2022
	$\stackrel{ }{*}$	\rightarrow	7	t	\leftarrow	4	4	\dagger	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个t		\%	ttt		\%	\uparrow	F	\%	\uparrow	F
Traffic Volume (veh/h)	196	1133	123	87	682	117	273	44	65	162	44	185
Future Volume (veh/h)	196	1133	123	87	682	117	273	44	65	162	44	185
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1900	1900	1885	1870	1885
Adj Flow Rate, veh/h	204	1180	113	91	710	108	284	46	26	169	46	49
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	1	1	1	1	1	1	1	0	0	1	2	1
Cap, veh/h	225	2775	266	113	2975	441	289	218	185	193	115	97
Arrive On Green	0.25	1.00	1.00	0.06	0.52	0.52	0.16	0.11	0.11	0.11	0.06	0.06
Sat Flow, veh/h	1795	4774	457	1795	5732	850	1795	1900	1610	1795	1870	1567
Grp Volume(v), veh/h	204	848	445	91	600	218	284	46	26	169	46	49
Grp Sat Flow(s),veh/h/ln	1795	1716	1800	1795	1621	1718	1795	1900	1610	1795	1870	1567
Q Serve(g_s), s	15.4	0.0	0.0	7.0	9.5	9.8	22.1	3.1	2.0	13.0	3.3	4.2
Cycle Q Clear($\mathrm{c}_{\text {_ }}$) , s	15.4	0.0	0.0	7.0	9.5	9.8	22.1	3.1	2.0	13.0	3.3	4.2
Prop In Lane	1.00		0.25	1.00		0.49	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	225	1994	1046	113	2524	892	289	218	185	193	115	97
V/C Ratio(X)	0.91	0.43	0.43	0.81	0.24	0.24	0.98	0.21	0.14	0.88	0.40	0.51
Avail Cap(c_a), veh/h	263	1994	1046	199	2524	892	289	547	463	250	498	417
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	51.7	0.0	0.0	64.8	18.5	18.6	58.6	56.2	55.7	61.5	63.2	63.6
Incr Delay (d2), s/veh	27.8	0.7	1.3	5.1	0.2	0.7	48.4	0.6	0.4	19.6	2.7	4.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	7.8	0.2	0.4	3.4	3.6	4.1	13.9	1.5	0.8	7.0	1.7	1.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	79.6	0.7	1.3	69.8	18.7	19.2	106.9	56.8	56.2	81.1	65.9	68.5
LnGrp LOS	E	A	A	E	B	B	F	E	E	F	E	E
Approach Vol, veh/h		1497			909			356			264	
Approach Delay, s/veh		11.6			23.9			96.8			76.1	
Approach LOS		B			C			F			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$, s	19.6	20.8	13.3	86.4	27.0	13.3	22.0	77.7				
Change Period ($Y+R \mathrm{c}$), s	4.5	*4.7	4.5	5.0	4.5	* 4.7	4.5	5.0				
Max Green Setting (Gmax), s	19.5	*40	15.5	46.0	22.5	*37	20.5	41.0				
Max Q Clear Time (g_c+11), s	15.0	5.1	9.0	2.0	24.1	6.2	17.4	11.8				
Green Ext Time (p_c), s	0.1	0.4	0.0	17.1	0.0	0.5	0.1	8.3				
Intersection Summary												
HCM 6th Ctrr Delay			31.0									
HCM 6th LOS			C									
Notes												

*HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

BASIS School TIS

Synchro 11 Repor
9 - Near-Term + Project PM

[^0]: BASIS School TIS
 2 - Existing Mid-Day PM

